The process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The developed Luenberger observer showed its ability to control the FJRM by utilizing only the measured signal of the velocity of the motor. Stability analysis is implemented to improve the ability of the designed observer to stabilize the FJRM system. The developed observer is tested by simulation to evaluate the ability of the observer to estimate the unknown states. The results showed that the proposed control algorithm estimated the motor angle, gear angle, link angle, angular velocity of gear, and angular velocity of link with zero steady errors.
Arterial aneurism and stenosis are disorders that lead to circulation malfunction. Stenosis often leads to hypoxia of the organ depending on the affected artery, whilst aneurism can lead to dissection with known lethal consequences. On both cases, the pulse wave produced by the contracting heart is reflected at these discontinuities, and estimating the size of these reflected waves using wave intensity analysis (WIA) is the main aim of this work. We also aim to measure wave speed, or pulse wave velocity (PWV) as more commonly known within the discontinuities. We manufactured 4 stenosis and 4 aneurism silicon sections, connected one at a time to a mother tube, and tested in vitro. Pressure and flow were measured proximal to the discontinuity
... Show MoreThe robot arm is the most popular robotic form used in industry. Thus, it is crucial to make a system programming which could controlled the movement of each part in the industrial robot to make it works properly. One of the simplest models of the robot arm is EDARM ED-7100 which has a controller to control the movement of the robot arm manually. In this study, the robot controller has been redesigned in order to improve this robot's function. The new controller system used AT89S52 microcontroller which has wire connected to the robot hand. A function has been added with this controller to improve the system of controlling and becomes better than the previous system (only manually). The functions of the new system include three mo
... Show MoreIn this research, a modified artificial hand with direct control has been designed using electrical artificial muscle wires that receive direct sensory impulses through human hand instead of using the mechanical action to open and close this artificial hand. Each finger is designed as a chain and its movements achieved through the conventional arrangement control of the electrical muscles wires. The results indicate that it is possible to design an artificial hand using electrical muscle wire for control it with high accuracy.
The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreMany production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreFinding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show More