<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive numbe
... Show MoreIn this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler
... Show MoreThe aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.
Wireless control networks (WCNs), based on distributed control systems of wireless sensor and actuator networks, integrate four technologies: control, computer network and wireless communications. Electrostatic precipitator (ESP) in cement plants reduces the emissions from rotary kiln by 99.8% approximately. It is an important thing to change the existing systems (wireline) to wireless because of dusty and hazardous environments. In this paper, we designed a wireless control system for ESP using Truetime 2 beta 6 simulator, depending on the mathematical model that have been built using identification toolbox of Matlab v7.1.1. We also study the effect ofusing wireless network on performance and stability of the closed l
... Show MoreWireless lietworking is· constantly improving, changing and
though ba ic principle is the same. ['nstead of using standard cables to transmit information fmm one point to another (qr more), it .uses radio signals. This paper presents .a case study considedng real-time remote
cqntroJ using Wireless UDP/JP-based networks,. The aim of-this werk is to
reduce real-time· remote control system based upon a simulatio.n model,
which can operate via general communication l"]etworks, whieh on bodies. modern wireles tcchnolqgy.
The first part includes· a brief
... Show MoreThis research is devoted to design and implement a Supervisory Control and Data Acquisition system (SCADA) for monitoring and controlling the corrosion of a carbon steel pipe buried in soil. A smart technique equipped with a microcontroller, a collection of sensors and a communication system was applied to monitor and control the operation of an ICCP process for a carbon steel pipe. The integration of the built hardware, LabVIEW graphical programming and PC interface produces an effective SCADA system for two types of control namely: a Proportional Integral Derivative (PID) that supports a closed loop, and a traditional open loop control. Through this work, under environmental temperature of 30°C, an evaluation and comparison were done for
... Show MoreAbstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show More