The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing as well as doping with silver. Gas sensing measurements were carried out using NO2 as a gaseous species to be detected. The results showed that the electrical conductivity, density as well as mobility of charge carriers, and gas sensitivity were affected by the doping level and annealing treatment.
Abstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreOptical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of opt
... Show MoreAlloys of InxSe1-x were prepared by quenching technique with
different In content (x=10, 20, 30, and 40). Thin films of these alloys
were prepared using thermal evaporation technique under vacuum of
10-5 mbar on glass, at room temperature R.T with different
thicknesses (t=300, 500 and 700 nm). The X–ray diffraction
measurement for bulk InxSe1-x showed that all alloys have
polycrystalline structures and the peaks for x=10 identical with Se,
while for x=20, 30 and 40 were identical with the Se and InSe
standard peaks. The diffraction patterns of InxSe1-x thin film show
that with low In content (x=10, and 20) samples have semi
crystalline structure, The increase of indium content to x=30
decreases degree o
The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Some of structural ,and electrical properties of pure and zinc (Zn) doped cadmium telluride thin films with impurity percentages (0.5, 1, 1.5)%, deposited on hot glass substrate (temperature equals to 423K) of thickness of 300nm and rate deposition of 0.5 nm.s-1 by thermal co-evaporation technique under vacuum of (2×10-5)Torr have been investigates. The structural properties for the prepared films were studied before and after. doping process by analysis of the X-ray diffraction, and it appeared that pure and dopant CdTe thin films are polycrystalline and have the cubic structure with preferential orientation in the [111] direction, and the crystal structure of the films were improved due to doping process. From d.c
... Show MoreA thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreIn this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.
In this research the electrical conductivity measurements were made on the amorphous InAs films prepared by thermal evaporation method in thickness 450 nm and annealed in different temperatures in the range (303- 573) K. The electrical conductivity (σ) showed a decreasing trend with the increasing annealing temperature, while the activation energies (Ea1, Ea2) showed an opposite trend, where the activation energies are increased with the annealing temperature.