The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing as well as doping with silver. Gas sensing measurements were carried out using NO2 as a gaseous species to be detected. The results showed that the electrical conductivity, density as well as mobility of charge carriers, and gas sensitivity were affected by the doping level and annealing treatment.
The thermoelectric power (S) of thermal evaporated a-InAs films
were measured in the temperature rang (303-408) K.
These films were prepared at different thickness (250,350,450) nm and treated at different annealing temperatures (303,373,423,473,523) K.
The behaviour of the thermoelectric power studies of these films
as a function of thickness and annealing temperature showed the thermoelectric power an increasing trend with annealing temperature
,whereas it decreases as the film thickness increases.
In this work, thin films of cadmium oxide: nickel oxide (CdO: NiO) were prepared by pulsed laser deposition at different pulse energies of Nd: YAG laser. The thin films' properties were determined by various techniques to study the effect of pulse laser energy on thin films' properties. X-ray diffraction measurements showed a mixture of both phases. The degree of crystallinity and the lattice constant increase with the laser energy increase, while the lattice strain decreases. FE-SEM images show that the substrates' entire surface is uniformly covered, without any cracks, with a well-connected structure consisting of small spherical particles ranging in size from 15 to 120 nm. Increasing the laser power causes to increase the pa
... Show MoreAkkas Field is a structural trap with a sandstone reservoir that contains proven gas condensate. The field is a faulted anticline that consists of the Ordovician Khabour Formation. The objective of this research is to use structural reservoir characterization for hydrocarbon recovery. The stratigraphic sequence of the Silurian and older strata was subjected to an uplift that developed a gentle NW-SE trending anticline. The uplifting and folding events developed micro-fractures represented by tension cracks. These microfractures, whether they are outer arc or release fractures, are parallel to the hinge line of the anticline and perpendicular to the bedding planes. The brittle sandstone laye
... Show MoreThe influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreIn this research, the electrical conductivity and Hall effect measurements have been investigated on the CuInTe2 (CIT) thin films prepared by thermal evaporation technique on glass substrate at room temperature as a function of annealing temperature (R.T,473,673)K for different thicknesses (300 and 600) nm. The samples were annealed for one hour. The electrical conductivity analysis results demonstrated that all samples prepared have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), and the electrical conductivity increases with the increase of annealing temperature whereas it showed opposite trend with thickness , where the electrical conductivity would d
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
This article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreIn this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.