Abstract: This article is a comparative analysis of the concept and types of homonyms in Russian and Arabic. Homonyms are lexical units that have the same sound but different meanings. The study of homonymy in different languages can help reveal the features of the semantic structure and syntactic rules of each language. The article discusses the main aspects of homonymy in Russian and Arabic, as well as a comparative analysis of the types of homonyms that exist in both languages. The study includes an analysis of the semantic meanings of homonyms, their use in context, and possible differences in syntactic features that may affect their interpretation and perception by native speakers of these languages. The purpose of the article is to identify similarities and differences between homonyms in Russian and Arabic, as well as understanding the influence of linguistic features on the emergence and functioning of homonymous phenomena in both languages. The results of the study may be useful for linguistic researchers, teachers and students interested in the semantic and syntactic aspects of various language systems.
Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreThis systematic review aimed to investigate the relation between orthodontic treatment (OT) and the incidence of the gingival black triangle (GBT) after completing treatment with a fixed orthodontic appliance, as well as the associated risk factors and the level of alveolar bone. Electronic and hand searches were conducted in three electronic databases for relevant articles published up to March 2022. Retrieved articles went through a two-step screening procedure, and the risk of bias (RoB) was assessed by the Joanna Briggs Institute checklists. The incidence of GBT after OT was set as the primary outcome, while the secondary outcomes were the risk factors associated with GBT and alveolar bone loss following OT. Out of 421 papers, 5
... Show MoreBackground. After tooth extraction, alveolar bone resorption is inevitable. This clinical phenomenon challenges dental surgeons aiming to restore esthetic and function. Alveolar ridge preservation can be applied to minimize dimensional changes with a new socket grafting material, an autogenous dentin graft, produced by mechanically and chemically processing natural teeth. This study assessed the safety and efficacy of using autogenous dentin biomaterial in alveolar ridge preservation. Materials and Methods. Patients with nonrestorable maxillary anterior teeth bounded by natural sound teeth were included in this study. After a detailed clinical and tomographic examination, eligible participants were randomly allocated into two groups
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
This study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h