Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we present an adopted approach based on convolutional neural networks to design a system for quality inspection with high level of accuracy and low cost. The system is designed using transfer learning to transfer layers from a previously trained model and a fully connected neural network to classify the product’s condition into healthy or damaged. Helical gears were used as the inspected object and three cameras with differing resolutions were used to evaluate the system with colored and grayscale images. Experimental results showed high accuracy levels with colored images and even higher accuracies with grayscale images at every resolution, emphasizing the ability to build an inspection system at low costs, ease of construction and automatic extraction of image features.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAn experimental investigation of the variation of argon discharge current with a glow and afterglow time intervals of a square discharge voltage was carried out at low pressure (6-11 mbar). The discharge was created between two circular metal electrodes of diameter (7.5 cm), separated horizontally by a distance (10 cm) at the two ends of a Pyrex cylindrical tube. A composite of two Gaussian functions has been suggested to fit and explain the variation graphs clearly. It is shown that the necessary times of glow and afterglow needed to attain a maximum discharge current are (70 us) and (60 us), respectively. The discharge current is observed to drop to the lowest value when the two times are serially longer than (85 us) and (72 u
... Show MoreA novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
In context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreHigh Q-factor based on absorption can be achieved by tuning (the reflection and the transition percentage). In this work, the simple design and simulated in S-band have been investigated. The simulation results of G-shape resonator are shown triple band of absorption peaks 60%, 91.5%, and 70.3%) at resonance frequency 2.7 GHz, 3.26 GHz, and 4.05 GHz respectively. The results exhibited very high of the Q-factor ( 271 ) at resonance frequency ( 3.26 GHz ). The high Q-factor can be used to enhance the sensor sensing, narrowband band filter and image sensing.