Preferred Language
Articles
/
nRfpto0BVTCNdQwC6hmk
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we present an adopted approach based on convolutional neural networks to design a system for quality inspection with high level of accuracy and low cost. The system is designed using transfer learning to transfer layers from a previously trained model and a fully connected neural network to classify the product’s condition into healthy or damaged. Helical gears were used as the inspected object and three cameras with differing resolutions were used to evaluate the system with colored and grayscale images. Experimental results showed high accuracy levels with colored images and even higher accuracies with grayscale images at every resolution, emphasizing the ability to build an inspection system at low costs, ease of construction and automatic extraction of image features.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 27 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Spectrophotometric Determination of Clonazepam in Pure and Dosage forms using Charge Transfer Reaction
...Show More Authors

A rapid, sensitive and without extraction spectrophotometric method for determination of clonazepam (CLO) in pure and pharmaceutical dosage forms has been described. The proposed method was simply depended on charge transfer reaction between reduced CLO (n-donor) and metol (N-methyl-p-aminophenol sulfate) as a chromogenic reagent (π- acceptor). The reduced drug, with zinc and concentrated hydrochloric acid, produced a purple colored soluble charge-transfer complex with metol in the presence of sodium metaperiodate in neutral medium, which has been measured at λmax 532 nm. All the variables which affected the developed and the stability of the colored product such as concentration of reagent and oxidant, temperature and time of rea

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Al-kindy College Medical Journal
A Comparison between High Ablative Versus Usual Dosages of Iodine-131 in Inducing Hypothyroidism After One Year of Therapy in Hyperthyroid Patients
...Show More Authors

Background: Radioactive iodine-131 therapy is highly effective in treating patients with hyperthyroidism. An ablative dose is preferred by a number of endocrinologists, and, a fixed dose protocol seems to be better than a calculated dose in real practice.

Objective: To check for hypothyroidism in hyperthyroid patients one year after RAI therapy, comparing between the results of high ablative versus usual dosages of RAI-131.

 Methods:  This study included 174 hyperthyroid patients, 101 males and 73 females, divided into 2 groups, the first consisted of 162 patients given a usual fixed dose of RAI while the second consisted of 12 patients given a high fixed ablati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 24 2024
Journal Name
Scientific Reports
Effectiveness of high-frequency vibration, cotton rolls and elastomeric wafers in alleviating debonding pain of orthodontic metal brackets: a randomized clinical trial
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Utilizing the ATM technology in e-distance learning
...Show More Authors

<p>There is an Increasing demand for the education in the field of E-learning specially the higher education, and to keep contiuity between the user and the course director in any place and time. This research presents a proposed and simulation multimedia network design for distance learning utilizing ATM technique. The propsed framework determines the principle of ATM technology and shows how multimedia can be integrated within E- learning conteext. The first part of this research presents a theoretical design for the Electricity Department, university of technology. The purpose is to illustrate the usage of the ATM and Multimedia in distance learning process. In addition, this research composes two entities: Software entity

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Crossref
Publication Date
Sun Nov 14 2021
Journal Name
Palarch's Journal Of Archaeology Of Egypt/egyptology
Blended Learning in Teaching English to University Students
...Show More Authors

QJ Rashid, IH Abdul-Abbas, MR Younus, PalArch's Journal of Archaeology of Egypt/Egyptology, 2021 - Cited by 4

View Publication
Publication Date
Sun Jan 31 2016
Journal Name
International Journal Of Research In Humanities, Arts, And Literature
THE PROBLEMS FACING IRAQI CHILDREN IN LEARNING ENGLISH
...Show More Authors

DBN Rashid, IMPAT: International Journal of Research in Humanities, Arts, and Literature, 2016 - Cited by 5

View Publication
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (12)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref