Due to the lack of statistical researches in studying with existing (p) of Exogenous Input variables, and there contributed in time series phenomenon as a cause, yielding (q) of Output variables as a result in time series field, to form conceptual idea similar to the Classical Linear Regression that studies the relationship between dependent variable with explanatory variables. So highlight the importance of providing such research to a full analysis of this kind of phenomena important in consumer price inflation in Iraq. Were taken several variables influence and with a direct connection to the phenomenon and analyzed after treating the problem of outliers existence in the observations by (EM) approach, and expand the sample size (n=36) to be (n=51) to face the limitation of the data. After that was a comprehensive analysis taking into account the size of the new sample.
It has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems. The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreThe research paper deals with the role of the place making in eco-tourism through a review of international experiences in the eco-tourism industry and its contribution to advancing the reality of tourism there, and attracting the largest number of tourists. The study is divided into five axes: the first is a study of related concepts, and the second is a study of global experiences, which included three countries: (South Bank (Gabriel's Wharf) - London, Rotterdam in the Netherlands, and dealt with each of Happy Streets and Kendrick Mills, and then the Perak River tourist corridor - Malaysia). As for the third axis, it is concerned with analyzing these experiences to reach th
... Show MoreAs the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreIn this research, we have added nano anatase TiO2 as a partial replacement of Portland cement by a weight percentage of (0.25 to 1%) for the development of properties for protection against bacteria. The control mix was made by using "the cement to sand" proportion about (1: 2.75) with the "water to cement" proportion of (0.5) to study the structure, porosity, water absorption, density, mechanical properties, as well as anti-bacterial behavior. Inspections have been done such as scanning electron microscopy (SEM), and atomic force microscope (AFM) for mortar. Experimental results showed that after the addition of Nano powders in cement mortar, the structural properties improved significantly with the development of hydration o
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show More