In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes estimators of the shape parameter of the Maxwell distribution decreases with the increase of Jeffreys prior constants. The results also show that values of Bayes estimators are almost close to the maximum likelihood estimator when the Jeffreys prior constants are small, yet they are identical in some certain cases. Comparison with respect to loss functions show that Bayes estimators under the modified squared error loss function has greater MSE than the squared error loss function especially with the increase of r.
Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreIn this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.
The current study was conducted to find out the effect of the sediment source (sedimentary of Iraqi-Iranian borderline and Tigris River) on the content and distribution of feldspar minerals and their effect on the optical properties of these minerals in some soils of Wasit and Maysan province. Eight pedons were chosen to represent the study area, five of them represented sediments coming from the borderline, which included pedons of (Badra, Taj Al-Din, Al-Shihabi, Jassan, and Galat), while two of them represent the sediments of the Tigris River (Essaouira, Al-Dabouni). Finally, the pedon of Ali Al-Gharbi represented the mixing area of sediments of all the torrents coming from borderline and the sediments of the Tigris River. The diagnostic
... Show MoreThis study seeks to address the impact of marketing knowledge dimensions (product, price, promotion, distribution) on the organizational performance in relation to a number of variables which are (efficiency, effectiveness, market share, customer satisfaction), and seeks to reveal the role of marketing knowledge in organizational performance.
In order to achieve the objective of the study the researcher has adopted a hypothetical model that reflects the logical relationships between the variables of the study. In order to reveal the nature of these relationships, several hypotheses have been presented as tentative solutions and this study seeks to verify the validity of these hypotheses.
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreAim: This study aimed to assessing orthodontic knowledge and attitude among general dentists and non-orthodontic specialists. Background: Early detection of orthodontic disorders is essentialin motivating patients to intervene prior to long term complications when the disorders are not recongised. Methods: A questionnaire was distributed amongst dentistsother than orthodontists. This questionnaire consisted of three sections. The first one aimed to collect demographic, educational level and practice type information. Further two sections consisted of closed-end questions designed to evaluateknowledge and attitude of orthodontics. Results: A total of 313 responses to the survey were submitted. No significant correlation was observed, e
... Show MoreHR Ghanim, GA Abdulhassan, International Journal of Early Childhood Special Education, 2022
Radiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show More