Background: Poly-ether-ether-ketone(PEEK) has been introduced to many dental fields. Recently it was tested as a retainer wire‎ following orthodontic treatment. This study aimed to investigate the effect of changing the bonding spot size and location on the performance of PEEK retainer wires. Methods: A biomechanical study involving four three-dimensional finite element models was performed. The basic model was with a 0.8 mm cylindrical cross-section PEEK wire, bonded at the center of the lingual surface of the mandibular incisors with 4 mm in diameter composite spots. Two other models were designed with 3 mm and 5 mm composite sizes. The last model was created with the composite bonding spot of the canine away from the center of the crown, closer to the lateral incisor. The linear displacement of the teeth, strains of the periodontal ligament, and stresses in PEEK wire and composite were evaluated. The data was numerically produced with color coded display by the software. Selected values were tabulated and compared among models. Results: The amount of linear displacement and strain was very low. Stresses in the wire and composite were affected by the size and position of the composite bonding spot. The safe limits were identified at 235 MPa for PEEK and 100 MPa for composite. The basic model had a von Mises stress in the PEEK wire of 122.09 MPa, and a maximum principal stress in the composite of 99.779 MPa. Both stresses were within the safe limits, which means a lower risk of failure in PEEK and composite. All other models had stresses that exceeded the safe limit of the composite. The 3 mm composite model was the only one that developed stresses in the wire more than the safe limits of PEEK. Conclusions: Within the limitations of this study, bonding PEEK wires with 4 mm bonding spots to the clinical crown center provided the best mechanical performance of the wires and spots; otherwise, the mechanical properties of the wire and composite would be affected and, therefore, might affect the retention process. Keywords: Retention, PEEK, Finite element analysis
Background: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreThe dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite a
... Show MoreIn this work, study the optical properties of composites consisting of poly Methyl Methacrylate and Berry Paper Mulberry. The samples of composites were prepared using casting method .The Berry Paper Mulberry (BPM) was added by different concentrations are (0, 2, 4 and 6)wt.%. The optical properties of composites have been studied in the wavelength range (200-800)nm. The absorption coefficient ,energy gap, refractive index, extinction coefficient and dielectric constants have been determined. The results show that the optical constants change with increase of BPM concentrations .
This work has been done with using of epoxy resin mixed with Granite powder were weighted by percent volume (5,10,15, and 20)%and then mixed with epoxy polymer to compose polymer composite. Hand lay-up technique is used in fabrication of the composite samples. Hardness test was carried out for the proper samples in both normal condition and after immersion in HCL (1 M and 2 M) solutions for periods ranging up to 10 weeks. After comparing the results between the polymer and their composite, the hardness increased with increasing Granite weight percent, it was found that Hardness were greater for the composites before immersion compared with their values after immersion.
The calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.
... Show MoreBackground: Cleaning and shaping of root canals successfully requires high volumes of irrigation solutions that can only be applied to the apical third of root canal after enlargement with instrument, so the aim of this study was to evaluate and to compare the efficiency of Maxi-I-probe (side-vented needle), in the amount of root canal irrigant penetration for five different master apical file sizes (MAF) and four different degrees of coronal and middle thirds flaring. Materials and Methods: Two hundred resin blocks with simulated root canals were used in this study and divided into 5 major groups (40 for each) based on the size of master apical files (#20, #25, #30, #35, and #40). Each major group was subdivided into 4 subgroups depending
... Show MoreThick films of poly(vinyl chloride)(PVC)& PVC doped with Zn(etx)2 salt complex have been prepared by cast method with fixed thickness almost (120±5) Microns. Optical studies were carried out in the wavelengths region(200-900)nm based on absorption & transmition measurement. Optical parameters such as absorption coefficient(?) ,refraction index(n) and extinction coefficient(K) were observed to be effected by adding the dopant.Electrical parameters such as real(?)& imaginary(?) part of dielectric constant were also calculated part of dielectric constant were also calculated from the optical parameters using Maxwell equation.
ABSTRACT Background:Hydrogen absorption and related degradation in the mechanical properties of Ni-Ti based orthodontic wires has been demonstrated following exposure to fluoride prophylactic agents. This study was designed to investigate the effects of three fluoride containing agents on the load deflection characteristics of heat activated nickel titanium arch wires during unloading phase. Material and method: Eighty specimens of heat activated nickel titanium arch wires were obtained from Ortho Technology Company, half of which had a 0.016 inch round and 0.019x0.025 rectangular. Ten specimens from both wire size were immersed in one of the tested fluoride prophylactic agents (neutral sodium fluoride gel, stannous fluoride gel or phos-flu
... Show MoreIn this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show More