Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of exploration in any optimization algorithm is one of the key points. The obtained optimization results show that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved efficiency.
Abstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreObjective(s): To determine the impact of Chemotherapy upon the quality of life for patients with chronic myeloid
leukemia in Baghdad city.
Methodology: A descriptive study design was carried out The study was initiated from 30 January 2011 to October
2011.A purposive (non–probability) sample consisted of (130) patients with a chronic myeloid leukemia ,Who
attended to Baghdad Teaching Hospital and National Center for Research and Treatment of Hematology. The
sample criteria was the patients who were 18 years old and above, excluding the patients who suffered from
psychological problems and other chronic illnesses .A questionnaire was adopted and developed from European
Organization Research and treatment of Can
beef and chicken meat were used to get Sarcoplasim, the chicken Sarcoplasim were used to prepare antibody for it after injected in rabbit, the antiserums activity were 1/32 by determined with Immune double diffusion test, the self test refer to abele for some antiserums to detected with beef sarcoplasim, which it mean found same proteins be between beef and chicken meat, which it refer to difficult depended on this immune method to detect for cheat of chicken meat with beef, so the antibody for beef sarcoplasim were removed from serum by immune absorption step to produce specific serum against chicken sarcoplasim that it used in Immune double diffusion test to qualitative detect for cheat beef with 5% chicken meat or more at least, and the
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreIn this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More