Preferred Language
Articles
/
nRcANo8BVTCNdQwCOGLO
An efficient artificial fish swarm algorithm with harmony search for scheduling in flexible job-shop problem
...Show More Authors

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of exploration in any optimization algorithm is one of the key points. The obtained optimization results show that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved efficiency.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Scienceasia
A combined compact genetic algorithm and local search method for optimizing the ARMA(1,1) model of a likelihood estimator
...Show More Authors

In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
An Efficient Method for Heat Recovery Process and燭emperature燨ptimization
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Jul 01 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
An Efficient Cryptosystem for Image Using 1D and 2D Logistic Chaotic Maps
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
2013 Ieee International Conference On Systems, Man, And Cybernetics
AWSS: An Algorithm for Measuring Arabic Word Semantic Similarity
...Show More Authors

View Publication
Scopus (24)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm
...Show More Authors

Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
A Proposal Algorithm to Solve Delay Constraint Least Cost Optimization Problem
...Show More Authors

Traditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
An efficient color quantization using color histogram
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm
...Show More Authors

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
View Publication Preview PDF
Crossref (2)
Crossref