An optical system including quantum dot cylindrical Fresnel lens (CFL) has been designed by using Zemax optical designing program. Quantum dot cylindrical Fresnel lens has a relatively small thickness compared to conventional lenses and high absorbance. It contains grooves in the form of parallel lines, and each groove represents an individual lens that works to change the path of light falling on it to a single focal line. (CFL) is characterized by its small focal length despite its large area and small thickness, due to the nature of its design that gives this feature, which is applied in many optical systems (imaging and non- imaging system). In this paper, the visual properties of the (CFL) were studied as it is one of the important issues that determine the shape and type of design, the purpose used for it and the type of optical system.
In this work we run simulation of gas dynamic problems to study the effects of Riemann
problems on the physical properties for this gas.
We studied a normal shock wave travels at a high speed through a medium (shock tube). This
would cause discontinuous change in the characteristics of the medium, such as rapid rise in
velocity, pressure, and density of the flow.
When a shock wave passes through the medium, the total energy is preserved but the energy
which can be extracted as work decreases and entropy increases.
The shock tube is initially divided into a driver and a driven section by a diaphragm. The
shock wave is created by increasing the pressure in the driver section until the diaphragm bursts,
se
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
The substrate's nature plays an important role in the characteristics of semiconductor films because of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide (SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) using a simple and low-cost chemical bath deposition technique. The structural, morphological, and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each film is polycrystalline and exhibits both orthorhombic and cubic stru
... Show MoreThis study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap val
... Show MoreIn the present study, multi-walled carbon nanotubes (MWCNTs) with outside diameters of< 8 nm and 20−30 nm were covalently functionalized with β-Alanine using a novel synthesis procedure. The functionalization process was proved successful using Raman spectroscopy, FTIR, and TEM. Utilizing the two-step method with ultrasonication, the MWCNTs treated with β-Alanine (Ala-MWCNTs) with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% were dispersed in distilled water to prepare water-based nanofluids. The aqueous colloidal dispersions of pristine MWCNTs were unstable. While for Ala-MWCNTs and after> 50 days from preparation, higher colloidal stability was obtained up to relative concentration of 0.955 and 0.939 for the 0.075-wt% samp
... Show MoreNew nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreDental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show More