Background. “Polyetheretherketone (PEEK)” is a biocompatible, high-strength polymer that is well-suited for use in dental applications due to its unique properties. However, achieving good adhesion between PEEK and hydrophilic materials such as dental adhesives or cement can be challenging. Also, this hydrophobicity may affect the use of PEEK as an implant material. Surface treatment or conditioning is often necessary to improve surface properties. The piranha solution is the treatment of choice to be explored for this purpose. Methods. PEEK disks of 10 mm diameter and 2 mm thickness were used in this study. Those samples were divided into five groups (each group has five samples). The first is the control group, in which no acid treatment was used; the second group undergoes sulfuric acid treatment. The remaining three groups were treated with Piranha solution; each group used a different concentration (1 : 3, 1 : 5, and 1 : 7 hydrogen peroxide to sulfuric acid, respectively). The period of treatment was 60 s for all groups. Wettability and surface roughness tests were done for the five groups. In statistical analysis, Shapiro–Wilk test was used to check the assumption of normality and to determine the statistical significance among groups; a one-way analysis of variance was employed. Subsequently, for multiple comparisons, Tukey’s honestly significant difference post hoc test was performed. Results. The Piranha solution treatment groups showed a higher wettability compared to the control group and the group treated with sulfuric acid. Additionally, the Piranha solution treatment with a higher concentration of hydrogen peroxide (1 : 3) resulted in greater improvement in surface roughness compared to the control group and the lower concentration groups (1 : 5 and 1 : 7), while the sulfuric acid treated group showed the highest surface roughness. Conclusion. The results of this study suggest that the piranha solution can be an effective method for improving the surface characteristics of PEEK to be used in different dental applications, especially as a dental implant material, due to the increase in wettability and surface roughness.
We investigate mathematical models of the Hepatitis B and C viruses in the study, considering vaccination effects into account. By utilising fractional and ordinary differential equations, we prove the existence of equilibrium and the well-posedness of the solution. We prove worldwide stability with respect to the fundamental reproduction number. Our numerical techniques highlight the biological relevance and highlight the effect of fractional derivatives on temporal behaviour. We illustrate the relationships among susceptible, immunised, and infected populations in our epidemiological model. Using comprehensive numerical simulations, we analyse the effects of fractional derivatives and highlight solution behaviours. Subsequent investigatio
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
This work was conducted to study the treatment of industrial waste water, and more particularly those in the General Company of Electrical Industries.This waste water, has zinc ion with maximum concentration in solution of 90 ppm.
The reuse of such effluent can be made possible via appropriate treatments, such as chemical coagulation, Na2S is used as coagulant.
The parameters that influenced the waste water treatment are: temperature, pH, dose of coagulant and settling time.
It was found that the best condition for zinc removal, within the range of operation used ,were a temperature of 20C a pH value of 13 , a coagulant dose of 15 g Na2S /400ml solution and a settling time of 7 days. Under these conditions the zinc concentrat
This research includes a study of the ability of Iraqi porcelanite rocks powder to remove the basic Safranine dye from its aqueous process by adsorption. The experiments were carried out at 298Kelvin in order to determine the effect of the starting concentration for Safranin dye, mixing time, pH, and the effect of ionic Strength. The good conditions were perfect for safranine dye adsorption was performed when0.0200g from that adsorbed particles and the removal max percentage was found be 96.86% at 9 mg/L , 20 minutes adsorption time and at PH=8 and in 298 K. The isothermal equilibrum stoichiometric adsorption confirmed, the process data were examined by Langmuir, Freundlich and Temkin adsorption equations at different temperatures
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
In this article the nanoparticles synthesis of ZnO (Nps) by using the precipitation method at concentrations range (0.5, 0.25, 0.125, 0.0625, 0.03125) mg/mL and then activity was examined against Streptococcus spp that causing dental caries in vitro by well diffusion method, find these concentrations effected in these bacteria and better concentration is 0.03125. ZnO Nps were characterization by EDS to prove this particles are ZnO, and also characterized by atomic force microscope (AFM), X-ray Diffraction (XRD) and TEM, from these technic found that the average size about 30.52 nm and hexagonal shape. The UV-visible result reveals that the large band is observed at 340.8 nm, Zeta potential show that the surface charge is 30.19 mv an
... Show MoreOptical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values