Preferred Language
Articles
/
nBboCocBVTCNdQwCYDKb
New Data Security Method Based on Biometrics
...Show More Authors

Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering inside random text. In the third scenario the encryption process insures a correct restoration of original message. Experimental results show that the proposed cryptosystem works well and secure due to the huge number of fingerprints may be used by attacker to attempt message extraction where all fingerprints but one will give incorrect results and the message will not represent original plain-text, also this method ensures that any intended tamper or simple damage will be discovered due to failure in extracting proper message even if the correct fingerprint are used.

Publication Date
Thu Feb 28 2019
Journal Name
Multimedia Tools And Applications
Shot boundary detection based on orthogonal polynomial
...Show More Authors

View Publication
Scopus (41)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Dec 21 2025
Journal Name
Iraqi Journal Of Science
Intrusion Detection Approach Based on DNA Signature
...Show More Authors

View Publication
Publication Date
Fri Aug 23 2024
Journal Name
Aro-the Scientific Journal Of Koya University
Graphical User Authentication Algorithms Based on Recognition
...Show More Authors

In cyber security, the most crucial subject in information security is user authentication. Robust text-based password methods may offer a certain level of protection. Strong passwords are hard to remember, though, so people who use them frequently write them on paper or store them in file for computer .Numerous of computer systems, networks, and Internet-based environments have experimented with using graphical authentication techniques for user authentication in recent years. The two main characteristics of all graphical passwords are their security and usability. Regretfully, none of these methods could adequately address both of these factors concurrently. The ISO usability standards and associated characteristics for graphical

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (23)
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Aug 14 2018
Journal Name
International Journal Of Engineering & Technology
Hybrid DWT-DCT compression algorithm & a new flipping block with an adaptive RLE method for high medical image compression ratio
...Show More Authors

Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig

... Show More
View Publication
Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Review Of International Geographical Education Online
Measuring The Efficiency of The Departments of The College of Administration and Economics / University of Baghdad Using the Method of Data Envelopment Analysis (DEA), A Comparative Study
...Show More Authors

Publication Date
Fri Jan 01 2021
Journal Name
Review Of International Geographical Education Online
Measuring The Efficiency of The Departments of The College of Administration and Economics / University of Baghdad Using the Method of Data Envelopment Analysis (DEA), A Comparative Study
...Show More Authors

The research aims at the possibility of measuring the technical and scale efficiency (SE) of the departments of the College of Administration and Economics at the University of Baghdad for a period lasting 8 years, from the academic year 2013-2014 to 2018-2019 using the method of Applied Data Analysis with an input and output orientation to maintain the distinguished competitive position and try to identify weaknesses in performance and address them. Nevertheless, the research problem lies in diagnosing the most acceptable specializations in the labor market and determining the reasons for students’ reluctance to enter some departments. Furthermore, the (Win4DEAp) program was used to measure technical and scale efficiency (SE) and rely on

... Show More
Scopus
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref