Preferred Language
Articles
/
mxhsZZcBVTCNdQwCv5cn
Investigating Fiber Reinforcement Effects on the Performance of Concrete Pavements under Repeated Load
...Show More Authors

Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analysis (FEA) using ABAQUS software was developed to examine pavement behavior under repeated loading. The results revealed that at 90 days, the SF1% mix exhibited a 9.1% improved compressive strength and CF1% mix a 7.3% improved strength over the control mix. The SF1% mix increased flexural strength by 72.5% and the CF1% mix by 48.6%. Additionally, splitting tensile strength increased by 70% for the SF1% and 45.5% for the CF1%. The hybrid mixes improved compressive strength by 7.6%-8.5%, flexural strength by 59.7%-70.2%, and splitting tensile strength by 56%-67.8%. The finite element modeling showed that the control mix was displaced 15 mm under repeated loading, while the SF1% reduced displacement by 35% and the hybrid mixes by 30%. These findings indicated that SF1% exhibited the best mechanical properties. However, fiber reinforcement, whether used single or in hybrid combinations, improves concrete pavement mechanical performance and loading behavior, offering a promising way to infrastructure durability and service life.

Crossref
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering Science And Technology
CORROSION of STEEL REINFORCEMENT in INTERNALLY CURED SELF-COMPACTING CONCRETE USING WASTE BRICK and THERMOSTONE
...Show More Authors

Internal curing is a method that has been advised to decrease the primary age cracking, mainly of concrete mixes using low (water to cementitious materials - w/cm) ratios corresponding to the self-compacting concrete-(SCC). This research aims to study the effect of the internal curing using saturated lightweight aggregate- (LWA) on the steel reinforcing corrosion in SCC. In this research, crushed bricks or thermostone were partially replaced by (20%) by the weight of sand and volumetrically measured. The results showed that the steel reinforcement of internally cured concrete showed a slight increase in corrosion up to 300 days of exposure to the saline solution (containing 3.5% NaCl). The ability of using the crushed bricks or thermostone

... Show More
Scopus (3)
Scopus
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering Science And Technology
CORROSION of STEEL REINFORCEMENT in INTERNALLY CURED SELF-COMPACTING CONCRETE USING WASTE BRICK and THERMOSTONE
...Show More Authors

Internal curing is a method that has been advised to decrease the primary age cracking, mainly of concrete mixes using low (water to cementitious materials - w/cm) ratios corresponding to the self-compacting concrete-(SCC). This research aims to study the effect of the internal curing using saturated lightweight aggregate- (LWA) on the steel reinforcing corrosion in SCC. In this research, crushed bricks or thermostone were partially replaced by (20%) by the weight of sand and volumetrically measured. The results showed that the steel reinforcement of internally cured concrete showed a slight increase in corrosion up to 300 days of exposure to the saline solution (containing 3.5% NaCl). The ability of using the crushed bricks or thermostone

... Show More
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Compressive Strength of Bottle-Shaped Compression Fields of Fiber Reinforced Concrete Members
...Show More Authors

Applying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal s

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 29 2012
Journal Name
Al-khwarizmi Engineering Journal
Effect of Construction Joints on Performance of Reinforced Concrete Beams
...Show More Authors

Construction joints are stopping places in the process of placing concrete, and they are required because in many structures it is impractical to place concrete in one continuous operation. The amount of concrete that can be placed at one time is governed by the batching and mixing capacity and by the strength of the formwork. A good construction joint should provide adequate flexural and shear continuity through the interface.

In this study, the effect of location of construction joints on the performance of reinforced concrete structural elements is experimentally investigated.

Nineteen beam specimens with dimensions of 200×200×950 mm were tested. The variables investigated are the location of the construction joints

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Building discriminant function for repeated measurements data under compound symmetry (CS) covariance structure and applied in the health field
...Show More Authors

Discriminant analysis is a technique used to distinguish and classification an individual to a group among a number of  groups based on a linear combination of a set of relevant variables know discriminant function. In this research  discriminant analysis used to analysis data from repeated measurements design. We  will  deal  with the problem of  discrimination  and  classification in the case of  two  groups by assuming the Compound Symmetry covariance structure  under  the  assumption  of  normality for  univariate  repeated measures data.

 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Concrete Beams Reinforced with 3D-Textile Composite Fiber
...Show More Authors

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 28 2021
Journal Name
Journal Of Engineering
The Catholyte Effects on The Microbial Desalination Cell Performance of Desalination and Power Generation
...Show More Authors

A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
The Effect of Using Different Aspect Ratios of Sustainable Copper Fiber on Some Mechanical Properties of High-Strength Green Concrete
...Show More Authors

To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Clay Masonry Prism under Vertical Load Using Detailed Micro Modeling Approach
...Show More Authors

The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m

... Show More
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Crack Growth Behavior through Wall Pipes under Impact Load and Hygrothremal Environment
...Show More Authors

This research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro

... Show More
View Publication Preview PDF
Crossref