Preferred Language
Articles
/
mxfSgJEBVTCNdQwC_JUp
Recent modification of Homotopy perturbation method for solving system of third order PDEs
...Show More Authors

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation
...Show More Authors

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
α-Sumudu Transformation Homotopy Perturbation Technique on Fractional Gas Dynamical Equation
...Show More Authors

     Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing RKM-Method for Solving Fractional Ordinary Differential Equations of Fifth-Order with Applications
...Show More Authors

This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs  in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Kufa For Mathematics And Computer
Four Points Block Method with Second Derivative for Solving First Order Ordinary Differential Equations
...Show More Authors

Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Implementations Special Third-Order Ordinary Differential Equations (ODE) for 5th-order 3rd-stage Diagonally Implicit Type Runge-Kutta Method (DITRKM)
...Show More Authors

The derivation of 5th order diagonal implicit type Runge Kutta methods (DITRKM5) for solving 3rd special order ordinary differential equations (ODEs) is introduced in the present study. The DITRKM5 techniques are the name of the approach. This approach has three equivalent non-zero diagonal elements. To investigate the current study, a variety of tests for five various initial value problems (IVPs) with different step sizes h were implemented. Then, a comparison was made with the methods indicated in the other literature of the implicit RK techniques. The numerical techniques are elucidated as the qualification regarding the efficiency and number of function evaluations compared with another literature of the implic

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
...Show More Authors

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

View Publication Preview PDF
Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref