Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet detection for information security. For effectual recognition of botnets, the proposed model involves data pre-processing at the initial stage. Besides, the model is utilized for the identification and classification of botnets that exist in the network. In order to optimally adjust the SVM parameters, the DFA is utilized and consequently resulting in enhanced outcomes. The presented model has the ability in accomplishing improved botnet detection performance. A wide-ranging experimental analysis is performed and the results are inspected under several aspects. The experimental results indicated the efficiency of our model over existing methods.
Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show MoreThe antiviral activity of leaf extracts from Datura stramonium and tomato plants inoculated with TMV, combined with 20% skimmed milk, was investigated. A TMV isolate was confirmed using bioassay, serological, and molecular approaches and subsequently used to inoculate plants. Tomato plants, both pre- and post-inoculated with TMV, were sprayed with leaf extracts from either TMV-free or infected plants, alone or mixed with 20% skimmed milk. Enzyme-linked immunosorbent assay (ELISA) using tobamovirus-specific antibodies and local lesion tests were conducted to assess antiviral activity based on virus concentration and infectivity in treated plants. The experiment followed a completely randomized design (CRD), and the Least Significant
... Show MoreAbstract
The study seeks to use one of the techniques (Data mining) a (Logic regression) on the inherited risk through the use of style financial ratios technical analysis and then apply for financial fraud indicators,Since higher scandals exposed companies and the failure of the audit process has shocked the community and affected the integrity of the auditor and the reason is financial fraud practiced by the companies and not to the discovery of the fraud by the auditor, and this fraud involves intentional act aimed to achieve personal and harm the interests of to others, and doing (administration, staff) we can say that all frauds carried out through the presence of the motives and factors that help th
... Show MoreHuman cytomegalovirus (HCMV) infection is ubiquitous and successfully reactivated in patients with immune dysfunction as in patient with multiple myeloma (MM), causing a wide range of life-threatening diseases. Early detection of HCMV and significant advances in MM management has amended patient outcomes and prolonged survival rates.
The aim of the study was to estimate the frequency of active HCMV in MM patients.
This is a case–control study involved 50 MM patients attending Hematology Center, Bag
objectives: To investigate the polyomaviruses (BK, JC) in asymptomatic kidney transplant recipients and healthy persons as control. It is one of the first reports on serological detection and molecular characterization that describes the circulation of polyomaviruses (BKV, JCV) have been done in Iraq recently. Methodology: The present study was designed as prospective case control study was done during the period from November 2015 to August 2016. Total of 97 serum and urine samples were collected randomly from 25 healthy control person and 72 renal transplant recipients, attending Iraqi Renal Transplantatio
To determine the relationship between Helicobacter pylori infection and Multiple Sclerosis (MS) disorder, 20 patients with MS aged (25-60) years have been investigated from the period of 2016/12/1 to 2017/3/1 and compared to 15 apparently healthy individuals. All study groups were carried out to measure anti H.pylori IgA and H.pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA) technique. There was a significant elevation (p<0.05) in the concentration of anti H.pylori IgG and IgA antibodies (Abs) compared to control group, and there was no significant difference (p>0.05) in the concentration of IgA and IgG (Abs) of H.pylori according to gender, and there was no significant difference (p>0.05) in the concentration of IgA and I
... Show More