Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet detection for information security. For effectual recognition of botnets, the proposed model involves data pre-processing at the initial stage. Besides, the model is utilized for the identification and classification of botnets that exist in the network. In order to optimally adjust the SVM parameters, the DFA is utilized and consequently resulting in enhanced outcomes. The presented model has the ability in accomplishing improved botnet detection performance. A wide-ranging experimental analysis is performed and the results are inspected under several aspects. The experimental results indicated the efficiency of our model over existing methods.
This paper aims to examine the effects of the gender differences on learners‟ motivation in learning the four skills of English as a foreign language as well as to identify the proper types of motivation for males and females via a qualitative semi-structured interview. The findings showed that all the males have extrinsic motivation in all four skills. On the other hand, females differ among themselves in their motivation. In conclusion, it is also the teachers‟ responsibility to guide and direct their learners to achieve better outcomes in learning the four EFL skills.
Abstract As the United Nations approaches its 70th anniversary, the world is going through the most severe accumulation of serious international security failures in recent memory, challenging the UN Security Council’s ability to address them effectively. Over the past four years, crises in Libya, Syria and Ukraine have precipitated a worrisome erosion of great power relations that has complicated Security Council decision making on a number of trouble spots. Its inability to devise consensus responses to the escalating civil war in Syria has been particularly troubling, resulting in the regional spill over into Iraq and the emergence of Islamic State as a new threat to peace in the region and beyond. Meanwhile, the UN’s often under
... Show MoreIn this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show More--The objective of the current research is to identify: 1) Preparing a scale level for e-learning applications, 2) What is the relationship between the applications of e-learning and the students of the Department of Chemistry at the Faculty of Education for Pure Sciences/ Ibn Al-Haytham – University of Baghdad. To achieve the research objectives, the researcher used the descriptive approach because of its suitability to the nature of the study objectives. The researcher built a scale for e-learning applications that consists of (40) items on the five-point Likrat scale (I agree, strongly agree, neutral, disagree, strongly disagree). He also adopted the scale of scientific values, and it consists of (40) items on a five-point scale as wel
... Show MoreThis study aimed to explore The Degree of Practicing of the Sixth Primary Social Studies’ Teachers in Iraq for the Principles of Active Learning from their Point of view
The study society consisted of 230 male and femalesocial studiesteachers’ subjects for the sixth primary grade in Al-Anbar General Directorate of Education. 160 of them were selected to represent the sample of the study with a percent of (70%) from the original society. To achieve the aims of the study, the researchers prepared a questionnaire consisting of (43) items which represented the active learning principles. The validity and stability of the tool were verified. The researchers used the descriptive approach to suit the objectives of this study. &
... Show MoreBeta-thalassemia major (β-TM) is inheritable condition with many complications especially in children. The blood-borne viral infection was proposed as a risk factor due to recurrent blood transfusion regimen (hemotherapy).
This study aimed to investigate Human parvovirus B19 (PVB19) prevalence in β-TM patients by serological and molecular means.
This is a cross-section
Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the
Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show More