Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.
Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
Abstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreThe palm vein recognition is one of the biometric systems that use for identification and verification processes since each person have unique characteristics for the veins. In this paper we can improvement palm vein recognition system have been made. The system based on centerline extraction of veins, and employs the concept of Difference-of Gaussian (DoG) Function to construct features vector. The tests results on our database showed that the identification rate is 100 % with the minimum error rate was 0.333.
Background subtraction is the dominant approach in the domain of moving object detection. Lots of research has been done to design or improve background subtraction models. However, there are a few well-known and state-of-the-art models that can be applied as a benchmark. Generally, these models are applied to different dataset benchmarks. Most of the time, choosing an appropriate dataset is challenging due to the lack of dataset availability and the tedious process of creating ground-truth frames for the sake of quantitative evaluation. Therefore, in this article, we collected local video scenes of a street and river taken by a stationary camera, focusing on dynamic background challenges. We presented a new technique for creati
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreIn this article our goal is mixing ARMA models with EGARCH models and composing a mixed model ARMA(R,M)-EGARCH(Q,P) with two steps, the first step includes modeling the data series by using EGARCH model alone interspersed with steps of detecting the heteroscedasticity effect and estimating the model's parameters and check the adequacy of the model. Also we are predicting the conditional variance and verifying it's convergence to the unconditional variance value. The second step includes mixing ARMA with EGARCH and using the mixed (composite) model in modeling time series data and predict future values then asses the prediction ability of the proposed model by using prediction error criterions.
In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tang
... Show MoreTo translate sustainable concepts into sustainable structure, there is a require a collaborative work and technology to be innovated, such as BIM, to connect and organize different levels of industry e.g. decision-makers, contractors, economists, architects, urban planners, construction supplies and a series of urban planning and strategic infrastructure for operate, manage and maintain the facilities. This paper will investigate the BIM benefits as a project management tool, its effectiveness in sustainable decision making, also the benefit for the local industry key stakeholders by encouraging the BIM use as a project management tool to produce a sustainable building project. This p