Preferred Language
Articles
/
mxell5ABVTCNdQwCrY6F
High-accuracy models for iris recognition with merging features
...Show More Authors

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual information (MI), along with analysis of variance (ANOVA) for feature selection. Two iris classification systems were developed: one using LDA as an input for the OneR machine learning algorithm and another innovative hybrid model based on a One Dimensional Convolutional Neural Network (HM-1DCNN). The MMU database was employed, achieving a performance measure of 94.387% accuracy for the OneR model. Additionally, the HM-1DCNN model achieved 99.9% accuracy by integrating LDA with MI and ANOVA. Comparisons with previous studies show that the HM-1DCNN model performs exceptionally well, with at least 1.69% higher accuracy and lower processing time.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 09 2020
Journal Name
Construction Research Congress 2020
Alternative Risk Models for Optimal Investment in Portfolio-Based Community Solar
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Mj Journal On Applied Mathematics
Mathematical models for estimation the concentration of heavy metals in soil
...Show More Authors

Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data
...Show More Authors

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 15 2015
Journal Name
Al Mustansyriah Journal Of Science
Comparison between (ARIMA) and (ANNs) models for estimating the relative humidity for Baghdad city
...Show More Authors

The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.

Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (12)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
A Survey on the Vein Biometric Recognition Systems: Trends and Challenges
...Show More Authors

Vascular patterns were seen to be a probable identification characteristic of the biometric system. Since then, many studies have investigated and proposed different techniques which exploited this feature and used it for the identification and verification purposes. The conventional biometric features like the iris, fingerprints and face recognition have been thoroughly investigated, however, during the past few years, finger vein patterns have been recognized as a reliable biometric feature. This study discusses the application of the vein biometric system. Though the vein pattern can be a very appealing topic of research, there are many challenges in this field and some improvements need to be carried out. Here, the researchers reviewed

... Show More
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
M A Modified Similarity Measure for Improving Accuracy of User-Based Collaborative Filtering: Nadia Fadhil
...Show More Authors

Production sites suffer from idle in marketing of their products because of the lack in the efficient systems that analyze and track the evaluation of customers to products; therefore some products remain untargeted despite their good quality. This research aims to build a modest model intended to take two aspects into considerations. The first aspect is diagnosing dependable users on the site depending on the number of products evaluated and the user's positive impact on rating. The second aspect is diagnosing products with low weights (unknown) to be generated and recommended to users depending on logarithm equation and the number of co-rated users. Collaborative filtering is one of the most knowledge discovery techniques used positive

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
Checking the Accuracy of Selected Formulae for both Clear Water and Live Bed Bridge Scour
...Show More Authors

Due to severe scouring, many bridges failed worldwide. Therefore, the safety of the existing bridge (after contrition) mainly depends on the continuous monitoring of local scour at the substructure. However, the bridge's safety before construction mainly depends on the consideration of local scour estimation at the bridge substructure. Estimating the local scour at the bridge piers is usually done using the available formulae. Almost all the formulae used in estimating local scour at the bridge piers were derived from laboratory data. It is essential to test the performance of proposed local scour formulae using field data. In this study, the performance of selected bridge scours estimation formulae was validated and sta

... Show More
View Publication Preview PDF
Crossref