In the present study NiPcTs, CdS thin films, and Blends of NiPcTs:CdS were prepared with 1:2 content mixing ratio of NiPcTs to CdS solutions. Cadmium chloride and thiourea were used as the essential materials for deposition CdS thin films while using organic powder of NiPcTs to deposit NiPcTs nanostructure films. The spin-coating technique was employed to fabricate the NiPcTs , CdS films and NiPcTs-CdS blend. Structural properties of films have been investigated via X-Ray diffraction(XRD),and show that thin films of NiPcTs, and CdS have monoclinic and polycrystalline hexagonal structure respectively while the blend has two polycrystalline structure with cubic and hexagonal phases. Atomic force microscope (AFM) confirmed that the surface of all samples are quite smooth and they are comprised of spherical numerous nanoparticles with diameter less than 70 nm. Scanning Electron Microscopy (SEM), and enery dispersive spectroscopy (EDS)analyzer has been achieved to determine the chemical composition of the molecular materials, which exhibit the existence of all essential elements of thin films and blend hetrojunction (BHJ) of NiPcTs –CdS. The preparation of chemical solutions,deposition of NiPcTs, CdS thin films and the blend hetrojunction BHJ of NiPcTs –CdS have been characterized.
Diamond-like carbon (DLC) homogeneous thin films were deposited from cyclohexane (Ccyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (C 6H12 ) liquid by using a plasma jet system which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with al
... Show MoreThe formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. How
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition r_d(1.04nm/sec) as function to annealing temperature (373 and 473K), from XRD analysis we can see that the degree of crystalline increase with T_a, and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
This work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreIn this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition (1.04nm/sec) as function to annealing temperature (373 and 373K), from XRD analysis we can see that the degree of crystalline increase with , and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.