TOFIQ Journal of Medical Sciences, TJMS, Vol. 3, Issue 2, (2016), 64-75 IS

ISSN: 2377-2808



## SYNTHETIC, SPECTROSCOPIC AND ANTIBACTERIAL STUDIES OF Co(II),Ni(II),Cu(II),Zn(II),Cd(II)AND Hg (II),MIXED LIGAND COMPLEXES OF TRIMETHOPRIME ANTIBIOTIC AND ANTHRANILIC ACID

Taghreed, H. Al-Noor, Lekaa, K. Abdul Karim.

Department of Chemistry Ibn-Al-Haithem College of Education for pure science,

Baghdad University, Iraq.

# **Corresponding Author:**

Prof. Taghreed. H. Al-Noor, PhD

E-mail: drtaghreed2@gmail.com

### Abstract

Mixed ligand complexes of bivalent metal ions, viz ; M = Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)<sub>2</sub>(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C<sub>7</sub>H<sub>7</sub>NO<sub>2</sub>) and Trimethoprime (TMP) = (C<sub>14</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub>) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity ( $\Lambda_m$ ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [µeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).

Key words: Trimethoprim, , Complexes, Anthranilic Acid and Antimicrobial

#### 1. Introduction

Mixed ligand complexes plays an important role in numerous medicine, chemical and biological systems like antioxidant, water softening, ion exchange resin, photosynthesis in plants, removal of undesirable and harmful metals from living organisms electroplating, dying also great importance in the field of environmental chemistry<sup>1-7</sup>. Development of antimicrobial drugs was wide as one of the great medical success story of the twentieth century<sup>8</sup>.

Research are being undertaken in fields such as cancer<sup>9</sup>, diabetes<sup>10</sup>, metal-mediated antibiotics, antibacterial, antiviral, antiparasitic and radiosensitizers<sup>11</sup>, In continuation of our efforts<sup>12, 13</sup> to progress metal-based therapeutics agents, the synthesis, characterization, and antibacterial studies of Anthranilic acid and trimethoprim are presented.

# 2. Experimental<sup>12, 13</sup>

#### 2.1. Chemicals

All chemicals used were of reagent grade and were used as received.CoCl<sub>2</sub>.6H, NiCl2.6H2O,CuCl2. 2H<sub>2</sub>O, CdCl<sub>2</sub>.H<sub>2</sub>O,HgCl<sub>2</sub>, ZnCl<sub>2</sub>, Na OH (supplied by either Merck or Fluka) ethanol, methanol, dimethylforamaide, dimethyl sulfoxide and KBr, from (B.D.H). Trimethoprime powder DSM (Spain) and Anthranilic acid from Riedial- Dehaen.

#### 2.2 Synthesis of (Mixing ligands) complexes with some metal ions

A solution of the metals containing[0.237g, 0.237g, 0.170g, 0.136g, 0.201g and 0.271g (1 mmol)] of CoCl<sub>2</sub>.6H<sub>2</sub>O,NiCl<sub>2</sub>.6H<sub>2</sub>O,CuCl<sub>2</sub>.2H<sub>2</sub>O,ZnCl<sub>2</sub>,CdCl<sub>2</sub>.H<sub>2</sub>O and HgCl<sub>2</sub> in methanol (10ml) respectively was added gradually with stirring to methanolic KOH solution (0.112g,2mmol) of the anthranilic acid.(0.290g ,1mmol) of Trimethoprime (TMP) was added to the mixture in each case by using stoichiometric amount (1:2:1) Metal:K<sup>+</sup> Anth<sup>-</sup> :(TMP) moler ratio. The mixture was refluxed with constant stirring for an hour. The mixture was cooled at room temperature pale precipitate was formed, filtered and recrystallized from ethanol dried at room temperature according to the following reaction :(scheme 1)



Scheme (1): Schematic representation preparation of the Complexes [M(Anth)<sub>2</sub>(TMP)]

#### 3. Results and Discssion

#### **3.1.** Characterization of Metal Complexes.

The complexes were prepared by reacting the respective metal Chloride with the ligands using 1:1:2 mole ratios, [TMP: M: 2 Anth], i.e. one mole of Trimethoprim [TMP], one mole of metal Chloride and two moles of Anthranilic acid [Anth.H]<sup>12, 13</sup>. The formula weights and melting points are given in Table (1). It was found that all the complexes were appeared as powders and stable in air at room temperature with higher melting points revealing that the

complexes are much more stable than their [AnthH & TMP] ligands indicating formation of complexes.

All these complexes are colored solids, insoluble in common organic solvents but soluble in DMF and DMSO. The conductivity values for the complexes (in DMSO, $10^{-3}$  M,25°C), ranging in the (3.1-19.9)  $\Omega^{-1}$ mol<sup>-1</sup>cm<sup>2</sup> region, indicate that the complexes are non electrolytes<sup>11</sup>. The test for Chloride ion (Cl) with AgNO<sub>3</sub> solution was (-negative)<sup>11-13</sup>. The calculated and experimental values of (M%) in each complex are in fair agreement as shown in Table (1).

| Table (1): The Physical Properties & Atomic Absorption Results of the |        |        |       |          |                                   |         |  |  |  |
|-----------------------------------------------------------------------|--------|--------|-------|----------|-----------------------------------|---------|--|--|--|
| [(TMP- Metal-Anth)] Complexes                                         |        |        |       |          |                                   |         |  |  |  |
| Compounds                                                             | M. wt  | Color  | Yield | M .p°c   | A                                 | Metal%  |  |  |  |
| Chemical Formula)                                                     | Calc   |        | %     | ( de) °c | $\Omega^{-1}$ cm <sup>2</sup> mol | Theory  |  |  |  |
|                                                                       |        |        |       |          |                                   | (exp)   |  |  |  |
| Anth.H                                                                | 137.14 | Pale-  | _     | 146      | 6.2                               |         |  |  |  |
|                                                                       |        | yellow |       |          |                                   | -       |  |  |  |
| [Co(Anth) 2(TMP)(H2O)]                                                | 620.96 | Brown  | 66    | 280      | 3.66                              | 9.49    |  |  |  |
|                                                                       |        |        |       |          |                                   | (9.01)  |  |  |  |
| [(Ni(Anth)2(TMP)(H2O)]                                                | 621.27 | Blue   | 63    | 265      | 13.3                              | 9.47    |  |  |  |
|                                                                       |        |        |       |          |                                   | (10.50) |  |  |  |
| [(Cu(Anth) 2(TMP)(H2O)]                                               | 625.57 | Green- | 75    | 285      | 19.9                              | 10.15   |  |  |  |
|                                                                       |        | blue   |       |          |                                   | (10.13) |  |  |  |
| [(Zn(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                      | 627.96 | Yellow | 60    | 290      | 11.3                              | 10.41   |  |  |  |
|                                                                       |        |        |       |          |                                   | (10.56) |  |  |  |
| [(Cd(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                      | 674.99 | White  | 70    | 240      | 3.66                              | 16.65   |  |  |  |
|                                                                       |        |        |       |          |                                   | (16.11) |  |  |  |
| [Hg(Anth) 2(TMP)(H2O)]                                                | 763.16 | Yellow | 59    | 112      | 5.0                               | 26.28   |  |  |  |
|                                                                       |        |        |       |          |                                   | 25.73   |  |  |  |

**3.2.** FT-IR spectra of [ (TMP), (Anth)] ligands &  $[Co(Anth)_2(TMP) (H_2O)]$  (1),  $[Ni(Anth)_2(TMP)(H_2O)]$  (2),  $[Cu(Anth)_2(TMP)(H_2O)]$  (3),  $[Zn(Anth)_2(TMP)(H_2O)]$  (4),  $[Cd(Anth)_2(TMP)(H_2O)]$  (5), and  $[Hg(Anth)_2(TMP)(H_2O)]$  (6) complexes.

The I.R spectrum of the Trimethoprim (TMP) which used as a primary ligand exhibits strong bands at (3471, 3319) cm<sup>-1</sup> ascribed to stretching vibration of primary amine  $v(NH_2)$  asym &sym respectively<sup>12, 13</sup>. A sharp very strong frequency band at 1633 cm<sup>-1</sup> & 1508cm<sup>-1</sup> in (TMP) assigned to the pyrimidine nitrogen v(C=N). The absorption bands at 1263 and 1236 cm<sup>-1</sup> which account for

C-O-C str. (asym.) and C-O-C str. (sym.) respectively<sup>14, 15</sup>

The FT-IR spectrum of the [Anth.H] which used as a secondary ligand Table (3-25) exhibits bind the metal ion as a bidentate monobasic fashion through (COO-) & (NH<sub>2</sub>) donors, while (TMP) bind the metal ion as a mono dentate ligand through the (N) atom<sup>14</sup>. The FT-IR spectra assignments bands for compounds (1), (2), (3), (4), (5) and (6),. are summarized in Table (4). The assignments have been carried out based on comparison of the spectra data with of similar compounds (6,11)..New weak intensity bands were observed in the regions (509-586) cm<sup>-1</sup> & (424-478) cm<sup>-1</sup> may be ascribed to M-N and M-O vibrations, respectively<sup>15, 16</sup>.

The FT-IR spectra of all the complexes exhibited peaks around  $(3305-3213) \text{ cm}^{-1}$  and in the range  $(1627-1623) \text{ cm}^{-1}$ . These peaks can be appointed to OH (stretching & bending) vibration, which indicate the presence of coordinated water molecule in the complexes. The coordinated between the (H<sub>2</sub>O) molecules and the (M<sup>+2</sup>) resulted in the appearance of vibrational bands at range (756-759) cm<sup>-1</sup> (M-OH<sub>2</sub>) in the all complexes<sup>12, 13</sup> and all complexes adopt an octahedral geometry as proposed.

| Table (2): Infrared spectral data(wave number ú) cm <sup>-1</sup> for the Trimethoprim |                |                          |                                      |                                     |                        |  |  |
|----------------------------------------------------------------------------------------|----------------|--------------------------|--------------------------------------|-------------------------------------|------------------------|--|--|
| υ (N-H) <sub>asym</sub>                                                                | v (N-H)<br>sym | υ (C=N)<br>Pyrimidine(N) | υ (C-O-<br>C) <sub>asym</sub><br>Str | υ (C-O-<br>C) <sub>sym</sub><br>Str | v (-OCH <sub>3</sub> ) |  |  |
| 3471vs                                                                                 | 3319           | 1633vs<br>1508vs         | 1263s                                | 1236s                               | 1128vs                 |  |  |

| Table (3): FT-IR Spectrum Data of the L-Anthranilic acid |                           |                              |                                        |                                        |                                                |  |  |  |  |
|----------------------------------------------------------|---------------------------|------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|--|--|--|--|
| (NH2)<br>asym,sym<br>Str                                 | U<br>(N-H3 <sup>+</sup> ) | v<br>C=O<br>Str<br>(carbox.) | v(-COO <sup>-</sup> ) <sub>asym.</sub> | v(-COO <sup>-</sup> ) <sub>sym</sub> . | Δυ<br>(-COO <sup>-</sup> ) <sub>asmy-smy</sub> |  |  |  |  |
| 3321 s<br>3240                                           | 3101s                     | 11716                        | 1662s                                  | 1485s                                  | 177                                            |  |  |  |  |

| Ta        | Table (4): Infrared spectral data(wave number $\hat{v}$ ) cm <sup>-1</sup> for the mixed [M(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)] complexes |                                       |                  |                     |                                 |                           |                                                    |                 |                  |                     |         |         |       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------|---------------------------------|---------------------------|----------------------------------------------------|-----------------|------------------|---------------------|---------|---------|-------|
| Compounds | и<br>(ОН-Н <sub>2</sub> О)                                                                                                                        | v(N-H <sub>2</sub> )<br>asym<br>& sym | υ (C-H)<br>arom. | v(C-H)<br>aliph     | (C=N)<br>Pyrimidine<br>Nitrogen | υ <sub>asy</sub><br>COO υ | 00-<br>ν <sub>m</sub> COO-<br>- ν <sub>m</sub> COO | v(C=C)<br>arom. | v(C-C)<br>aliph. | υ <i>−0H</i><br>H₂O | v (M-N) | v(M- N) | (M-O) |
| 1) Co     | 3410                                                                                                                                              | 3305<br>3226                          | 3136             | 2935,               | 1616                            | 1538                      | 211                                                | 1492<br>s       | 1242             | 756                 | 586     | 516     | 470   |
| 2) Ni     | 3448                                                                                                                                              | 3305 w<br>3217 w                      | 3028             | 2939,<br>2835s      | 1605                            | 1543                      | 216                                                | 1492            | 1237v<br>s       | 756                 | 586     | 516     | 478   |
| 3)<br>Cu  | 3406                                                                                                                                              | 3275<br>3236                          | 3124             | 2936<br>2835        | 1600                            | 1550                      | 227                                                | 1500            | 1238v<br>s       | 759                 | 567     | 516     | 424   |
| 4) Zn     | 3406                                                                                                                                              | 3298<br>3213                          | 3128             | 2935s<br>2835       | 1616                            | 1543                      | 226                                                | 1492            | 1238             | 756vs               | 563     | 513     | 428   |
| 5)<br>Cd  | 3425                                                                                                                                              | 3329<br>3224                          | 3140             | 2935 s<br>2835      | 1616                            | 1589                      | 189                                                | 1531            | 1238             | 756vs               | 567     | 509     | 455   |
| 6)<br>Hg  | 3420                                                                                                                                              | 3352 s<br>3217                        | 3065             | 2939,<br>2835<br>Vs | 1627s                           | 1593                      | 220                                                | 1492<br>s       | 1238s            | 759                 | 578     | 528     | 451   |

**3.3** .The (UV-Vis spectra) of the free (TMP) and ((Anth.H)) and [M(Anth)  $_2$ (TMP)(H<sub>2</sub>O)] complexes were carried out as DMSO (10<sup>-3</sup> M) solutions and corrected magnetic moment (µeff) in Bohr magneton units are given in Table 5. The µeff for the all M(II) in this study as expected for six coordinated M (II) species suggest an octahedral geometry. These employments are in agreement with the literature values<sup>12, 13, 17, 18</sup>.

| Table5: Electronic Spectral data, magnetic moment µ <sub>eff</sub> (BM)of the<br>[M(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]complexes |                        |                    |                                                                          |                                                          |                       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|--------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|--|--|--|
| Compound                                                                                                                                 | λ <sub>max</sub><br>nm | ú cm <sup>-1</sup> | ε <sub>max</sub><br>Mol <sup>-</sup><br><sup>1</sup> .L.cm <sup>-1</sup> | Assignments                                              | μ <sub>eff</sub> (BM) |  |  |  |
| TMP                                                                                                                                      | 257                    | 38910              | 2431                                                                     | $\pi \rightarrow \pi^*$                                  | -                     |  |  |  |
| Anth.H                                                                                                                                   | 245                    | 41322              | 1857                                                                     | $\pi \rightarrow \pi^*$                                  | -                     |  |  |  |
|                                                                                                                                          | 332                    | 30120              | 1924                                                                     | $n \rightarrow \pi^*$                                    |                       |  |  |  |
| [Co(Anth) 2(TMP)(H2O)]                                                                                                                   | 301                    | 33222              | 1651                                                                     | Charge transfer                                          |                       |  |  |  |
|                                                                                                                                          | 773                    | 12936              | 76                                                                       | ${}^{4}T_{1}q \rightarrow T_{2}q^{(p)}$ ) up             | 4 34                  |  |  |  |
|                                                                                                                                          | 821                    | 12180              | 66                                                                       | ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g^{(f)}v_{2}$       | 4.34                  |  |  |  |
| [(Ni(Anth)2(TMP)(H2O)]                                                                                                                   | 276                    | 36231              | 1950                                                                     | Ligand Field                                             | 2.73                  |  |  |  |
|                                                                                                                                          | 624                    | 16025              | 81                                                                       | $^{3}A_{2}g^{(F)} \rightarrow ^{3}T_{1}g^{(p)}v_{3}$     |                       |  |  |  |
|                                                                                                                                          | 663                    | 15082              | 68                                                                       | ${}^{3}A_{2}g^{(F)} \rightarrow {}^{3}T_{1}g^{(f)}v_{2}$ |                       |  |  |  |
|                                                                                                                                          | 706                    | 14164              | 55                                                                       | $3A2g(F) \rightarrow 3T2g(F)$ $\upsilon_1$               |                       |  |  |  |
|                                                                                                                                          | 821                    | 12180              | 37                                                                       |                                                          |                       |  |  |  |
| [(Cu(Anth) 2(TMP)(H2O)]                                                                                                                  | 289                    | 34602              | 1484                                                                     | Ligand Feild                                             | 1.75                  |  |  |  |
|                                                                                                                                          | 345                    | 28985              | 1198                                                                     | CT                                                       |                       |  |  |  |
|                                                                                                                                          | 813                    | 12300              | 15                                                                       | $2Eg \rightarrow 2T2g$                                   |                       |  |  |  |
| [(Zn(Anth) 2(TMP)(H2O)]                                                                                                                  | 325                    | 30769              | 1934                                                                     | C.T                                                      | Diamagn               |  |  |  |
| [(Cd(Anth) (TMP)(H_O)]                                                                                                                   | 318                    | 31446              | 2245                                                                     | СТ                                                       | Diamagn               |  |  |  |
| [(Ca(Ann)/2(Tan )(H2O)]                                                                                                                  | 510                    | 51440              | 2245                                                                     | 0.1                                                      | etic                  |  |  |  |
| [Hg(Anth) 2(TMP)(H2O)]                                                                                                                   | 247                    | 40485              | 2399                                                                     | C.T                                                      | Diamagn               |  |  |  |
|                                                                                                                                          | 343                    | 29154              | 1824                                                                     | C.T                                                      | etic                  |  |  |  |

# 3.4 . The Proposed Molecular Structure for Studying $[M(Anth)_2(TMP)(H_2O)]$ Complexes :

Studying complexes on bases of the above analysis, spectral observations suggesting the octahedral geometry for all the prepared complexes which exhibited coordination number six and may be formulated as: $[M(Anth)_2(TMP)(H_2O)]$ ,

#### M=Co(II),Ni(II),Cu(II),Zn(II),Cd(II)and Hg(II).

The general structure of the complexes is 3D as is shown in Figure (1) .Accordingly, we can deduce that the (Athr<sup>-</sup>) binds the M(II) as bidentate fashion (NO<sup>-</sup>) .The bonding sites are the Nitrogen (amine group) & Oxygene the carboxylato group ,while (TMP) binds the M(II) as mono dentate. through the (N) atom of the pyrimidine group .



Figure (1): 3D molecular modeling proposed [M(Anth)<sub>2</sub>(TMP) (H<sub>2</sub>O)] complexes

#### **3.5.** Bacterial activities of the [M(Anth)<sub>2</sub>(TMP)(H<sub>2</sub>O)]complexes :

M=Co(II),Ni(II),Cu(II),Zn(II),Cd(II)and Hg(II)

Antimicrobial activity were expressed in terms of millimeter (mm) by measuring inhibition zone diameters (ZI) and contrasted with the DMSO solvent (as control) and the values have been tabulated. Tables (6), Chart (1) and Figure (2)

Compounds (ligads & complexes), were screened for their in vitro antibacterial activity against (2Gram-negative (-) =,*Escherichia coli*, , *and Pseudomonas aeruginosa*) and (2 Grampositive (+) =*Bacillus subtilis* and *Staphylococcus aureus*) bacterial strains<sup>20, 21.</sup> Generally the (ZI) mm compounds were in the following order; Metal complexes > Anth.H > TMP = DMSO.

The (ZI) of the(TMP) show inactive to weak active against the growth of three bacteria but (Anth.H) show moderately active to highly active.The  $[Co(Anth)_2(TMP)(H_2O)]$ show highly activity against 3-organisms uses except *Pseudomonas*. All complexes show highly antibacterial activity against *Bacillus*.

 $[M(Anth)_2(TMP)(H_2O)]$ , M=Ni(II),Cu(II),and Zn(II)]complexes ,shows active antibacterial against *E-coli* and *Pseudomonas*.

 $[Cd(Anth)_2(TMP)(H_2O)]$  and  $[Hg(Anth)_2(TMP)(H_2O)]$  shows very good antibacterial activity against all bacteria.

The increased inhibition activity of the metal complexes can be explained on the basis of Tweedy's chelation theory<sup>13,14</sup>. In metal complexes, on chelation the polarity of the metal ion will be reduced to a greater extent due to the overlap of the ligand orbital<sup>20, 21</sup>.

| Table (6):Biological activity of the mixed [M(Anth)2(TMP)(H2O)] complexes |                                    |        |             |                          |          |  |  |  |  |
|---------------------------------------------------------------------------|------------------------------------|--------|-------------|--------------------------|----------|--|--|--|--|
| (ZI) (mm)                                                                 |                                    |        |             |                          |          |  |  |  |  |
| Compound                                                                  | N <sub>O</sub> in<br>Petri<br>dish | E-coli | Pseudomonas | Staphylococcus<br>aureus | Bacillus |  |  |  |  |
| Control(DMSO)                                                             | с                                  | 5      | 7           | 5                        | 6        |  |  |  |  |
| TMP                                                                       | _                                  | 4      | 0           | 5                        | 10       |  |  |  |  |
| Anth.H                                                                    | _                                  | 18     | 9           | 21                       | 13       |  |  |  |  |
| [Co(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                           | 1                                  | 11     | 0           | 12                       | 37       |  |  |  |  |
| [Ni(Anth)2(TMP)(H2O)]                                                     | 2                                  | 0      | 0           | 11                       | 26       |  |  |  |  |
| [Cu(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                           | 3                                  | 0      | 0           | 22                       | 30       |  |  |  |  |
| [Zn(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                           | 4                                  | 0      | 0           | 12                       | 35       |  |  |  |  |
| [Cd(Anth) <sub>2</sub> (TMP)(H <sub>2</sub> O)]                           | 5                                  | 20     | 33          | 0                        | 36       |  |  |  |  |
| [Hg(Anth)2 (TMP)(H2O)]                                                    | 6                                  | 27     | 18          | 39                       | 40       |  |  |  |  |







Figure (2) Photograph of Antimicrobial Activity of compounds

#### References

- 1. Mrinalinil L. and Manihar Singh A.K., (2012)."Mixed ligand Co(III) complexes with 1-amidino-O-methyl urea and amino acids", J., Res. Chem. Sci., 2(1), 45-49.
- Girgaonkar M.V. and Shirodkar S.G., (2012), "synthesis, characterization and biological studies of Cu(II) and Ni(II) complexes with new bidentate schiff's base ligands as 4-hydroxy-3-(1-(arylimino)ethyl) (arylimino)ethyl)Chromen-2-one", Res. J. Recent Sci., 1(ISC-2011), 110-116,
- Agarwal Ram K., Sharma Deepak and Agarwal Himanshu. (2006), "Synthesis, biological, spectral and thermal investigation of Cobalt (II) and Nickel (II) complexes of N-isoniotinamido-2,4-dichlorobenzaldimine", J. Bioinorganic Chemistry and Applications., 1 (9),2863–2875.
- Gupta Y.K., Agarwal S.C., Madnawat S.P. and Ram Narain., (2012), "Synthesis, characterization and antimicrobial studies of some transition metal complexes of Schiff bases, Res. J., Chem. Sci., 2(4), 68-71.
- Sankhala K.and Chaturvedi A., (2012) "Microwave assisted synthesis, characterization and antibacterial activity of some arsenic(III) derivatives of O-alkyl or O-aryl tri thio phosphates, J., Res. Chem. Sci., 2(5), 57-65.
- 6. Gazala Mohamed H. and Ben Hander. (2012), "Ternary complexes of Cobalt(II) involving Nitrilotriacetic acid and some biological active ligands, J., Res. Chem. Sci., 2(3), 12-20.
- Rajasekar K., Ramchandramoorthy T.and Paulraj A., (2012) "Microwave assisted synthesis, structural characterization and biological activities of 4-aminoantipyrine and thiocynate mixed ligand complexes", J., Res. Pharmaceutical Sci., 1(4), 22-27.
- Cook B. M., Mohandas N., and Copel R. L., (2004) "Malaria and the red blood cell membrane," Seminars in Hematology, vol. 41, 173–188.
  Hartinger C. G., Jakupec M. A., Zorbas-Seifried S.(2008), "KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase I study in tumor patients," J., Chemistry and Biodiversity, 5, (10). 2140–2155.
- Garoufis A., Hadjikakou S. K., and Hadjiliadis N., (2009) "Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents," J., Coordination Chemistry Reviews, 253, (. 9-10), 1384–1397.
- 10. Taghreed, H. Al-Noor, Ahmed. T.AL. Jeboori, Manhel R.Aziz, (2014), J., International Technical Research and Applications, 2, (4) 187-192
- 11. Geary W. J., (1971), "The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds". J., Coord. Chem. Rev.; 7, 81-122.
- Taghreed. H. Al-Noor, Lekaa K. Abdul Karim, (2015) "Synthesis, Physico-Chemical and Antimicrobial Activities Co(II),Ni (II) ,Cu(II), Zn(II),Cd(II) and Hg(II) Mixed-Ligand Complexes of L- Alanine and Trimethoprim Antibiotic"J., Chemistry and Materials Research.,7 (.5),82-91.
- Taghreed. H. Al-Noor, Lekaa K. Abdul Karim ,(2015) "Synthesis, Physico-Chemical and Antimicrobial Activities Co(II),Ni (II) ,Cu(II), Zn(II),Cd(II) and Hg(II) Mixed- Ligand Complexes of L- Prolin and Trimethoprim Antibiotic", J., Chemistry and Materials Research ,7(3),32-39.
- 14. 14-William, K. (1991) (Organic Spectroscopy), 3rd edition, Macmillan Education Ltd, London, 49-54, 60-75

- 15. Lin-Vien, D., N.B. Colthup, W.G. Fately & J.C. Grasselli (1991) "The Handbook of Infraredand Raman Characteristic Frequencies of Organic Molecules" Academic Press; San Diego.
- 16. Nakamoto, K. (1997) "Infrared and Raman Spectra of Inorganic and Coordination Compounds" 5th Edit., Part B; Wiley; New York.
- 17. 17. Lever A.B.P.; (1984) "Inorganic spectroscopy" Elsevier publishing company 1rd Ed.
- 18. Shriver & Atkins "Inorganic Chemistry", 3rd Ed., Freeman, (1999).
- Abu-El-Wafa, S.M El-Rifs, M.A and Ahmed, F.H (1987) "Formation of metformin complexes with some transition metal ions and their biological activity". J., Inorg. Chim. Acta. 136:127-131
- 20. Awetz, Melnick and A .Delbrgs .; (2007) "Medical Microbiology" McGraw Hil-USA.
- Poomalai J., Selladurai P., Subramanian V.i and Rangappan R. (2011), Synthesis, spectral characterization, electrochemical and anti-microbial activities of new binuclear Schiff base metal complexes derived from 3, 3' diaminobenzedine. J., Euro. Chem. 2(4), 480 -484.