Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method
...Show More Authors
In the present work, a D.C. magnetron sputtering system was
designed and fabricated. This chamber of this system includes two
coaxial cylinders made from copper .the inner one used as a cathode
while the outer one used as a node. The magnetic coils located on
the outer cylinder (anode) .The profile of magnetic field for various
coil current (from 2Amp to 14Amp) are shown. The effect of
different magnetic field on the Cu thin films thickness at constant
pressure of 7x10-5mbar is investigated. The result shown that, the
electrical behavior of the discharge strongly depends on the values
of the magnetic field and shows an optimum value at which the
power absorbed by the plasma is maximum. Furthermore, the
pl
Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreZ-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (
Indium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreFilms of silver oxide of different thickness have been prepared by the chemical spray paralysis. Transmission and absorption spectra have recorded in order to study the effect of increasing thickness on some optical parameter such as reflectance, refractive index , and dielectric constant in its two parts . This study reveals that all these paramters affect by increasing the thickness .
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreThe study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show MoreIn this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).