Isolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 35°C with 98.63%, where 10000ppm kerosene showed the highest degradation at 99.527%. The results indicate that the isolated Klebsiella pneumonia sp. is extremely efficient in degrading kerosene hydrocarbons.
This study concerns the isolation of oil degraded bacterial samples from oil polluted soil in Al-Dora refinery/ Baghdad – Iraq. Soil samples (15) were on mineral salt agar medium (MSM) used to screen the oil degrading bacteria by forming clear zones around the colonies. To confirm the degradation of oil by these bacteria, the isolates were inoculated in mineral salt broth, 15 isolates of Pseudomonas spp. was detected from which two isolates identified as P. aeruginosa by morphological, physical and biochemical characteristics that confirmed by using Vitick identification system. Growth was estimated in terms of whole cell by measuring optical density at 620 nm and free extract protein was estimated by protein measurement with Folin phe
... Show MoreTwenty four soil samples were collected from different sites in north sector of East Baghdad oil field, Iraq , and analyzed to assess the impact of urbanization and industrialization essential pollution. The soil samples were analyzed for heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using inductively coupled plasma–mass spectrometry (ICP-MS). Mean concentration of heavy metals in soil samples follows this pattern: Zn > Ni > Cr > Cu >Pb > As> Cd> Hg. The results show significant variations (lower and higher) in the concentrations of heavy metals compared with local and world studies, this variation is attributed to the natural anthropogenic sources. The pollution of studied soil was assessed using many soil
... Show MoreThe current study included the isolation, purification and cultivation of blue-green alga Oscillatoria pseudogeminata G.Schmidle from soil using the BG-11liquid culture medium for 60 days of cultivation. The growth constant (k) and generation time (G) were measured which (K=0.144) and (G=2.09 days).
Microcystins were purified and determined qualitatively and quantitatively from this alga by using the technique of enzyme linked immunosorbent assay (Elisa Kits). The alga showed the ability to produce microcystins in concentration reached 1.47 µg/L for each 50 mg DW. Tomato plants (Lycopersicon esculentum) aged two months were irrigated with three concentrations of purified microcystins 0.5 , 3.0 and 6.0
... Show MoreIn this research measuring the radioactivity of the soil batteries plant in Waziriya in Baghdad city ,where the collection of 60 samples from different locations and depth between(10cm-50cm)by using γ-ray spectrometer technique and sodium iodide detector to measure the activityof radiation of elements radiation ,where the results showed that there are aradioctivety of natural isotopes refers to the chains of U-238and Th-232and K-40and Cs-137the results show that ahigh concentration of Pb-214,Pb-212 within the permissible internationally values ,also the valuable parameters of radium and the external and internal hazard and the dose effect where its found to be permissible internationally.
This work represents the set of measurements of radon and thoron concentrations levels of soil-gas in Al-Kufa city in Iraq using electric Radon meter (RAD-7). Radon and thoron concentration were measured in soil-gas in 20 location for three depth of (50, 100 and 150) cm.
The results show that the emanation rate of radon and thoron gas varied from location to anther, depending on the geological formation. The Radon concentration in soil has been found to vary from (12775±400) Bq/m3 at 150 cm depth in location (sample K2) to (41.45±17) Bq/m3, for depth 150 cm in location (sample K20). The thoron concentration in soil has been found to vary from (198±8.5) Bq/m3 at 150 cm depth in location samples (K1 & K2) to undetected in the mos
Gypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show MoreNanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil–earthworm systems to compare the fate and uptake of analytical‐grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non‐nano treatments, whereas dissipation half‐lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more b
The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the ti
... Show More