We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelengths and are maintained at room temperature. Results of the absorption spectra demonstrated that the quantity of material ablated is inversely proportional to the laser pulses' wavelength. FESEM and TEM images show that WO3-NPs, which were prepared by both samples, were spherical. They also show that the wavelength of laser pulses caused an increase in the particle size of NPs. The X-ray diffraction analysis revealed a polycrystalline structure with a preferential orientation along the (220) plane, which corresponded to a diffraction angle of 58.84°. The energy of the optical bandgap of WO3-NPs increases with a decrease in the wavelength of laser pulses, which is calculated to be 3.4 and 3.42 eV for 1064nm and 532 nm wavelengths, respectively. The photoluminescence result agrees well with the estimated optical band gaps.
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreSolar hydrogen line emission has been observed at the frequency of 1.42 GHz (21 cm wavelength) with 3m radio telescope installed inside the University of Baghdad campus. Several measurements related to the sun have been conducted and computed from the radio telescope spectrometer. These measurements cover the solar brightness temperature, antenna temperature, solar radio flux, and the antenna gain of the radio telescope. The results demonstrate that the maximum antenna temperature, solar brightness temperature, and solar flux density are found to be 970 K, 49600K, and 70 SFU respectively. These results show perfect correlation with recent published studies.
Abstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreBackground: Atrioventricular nodal reentrant tachycardia (AVNRT) is the commonest regular supraventricular tachyarrhythmia. Ablation in the area of slow pathway (SP) has been successfully implemented in every day clinical electrophysiological practice for more than 20 years. Although the procedure is generally regarded as effective and safe, data on long-term effects and predictors of success or failure are incomplete.
Q-switched lasers widely used in management skin diseases and
sometimes its effect may be inadequate or associated with
cytotoxicity. The current study aimed to investigate the effect of
Q-switched Nd:YAG laser upon cellular elements using in vitro
experimental model. Aqueous solutions of human albumin and pure
calf thymus double strand deoxyribonucleic acid (ctdsDNA)
irradiated with Q-switched Nd:YAG laser at different rates (1, 3 Hz)
and time exposure (up to 60 seconds) using 532 nm (400 mJ) and
1064 (1200 mJ) nm wavelength with fixed spot size of 4 mm. The
effect of laser irradiation on the albumin solution also studied in the
presence of elemental salts of copper, zinc and iron.
Q-switched laser irrad
Iraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreThe simulation study has been conducted for the harmonics of Nd: YAG laser, namely the second harmonic generation SHG, the third harmonic generation THG, and the fourth harmonic generation FHG. Determination of beam expander's expansion ratio for specific wavelength and given detection range is the key in beam expander design for determining minimum laser spot size at the target. Knowing optimum expansion ratio decreases receiving unit dimensions and increases its performance efficiency. Simulation of the above mentioned parameters is conducted for the two types of refractive beam expander, Keplerian and Galilean. Ideal refractive indices for the lenses are chosen adequately for Nd: YAG laser harmonics wavelengths, so that increasing transm
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
|
|
spectra and J>hysical methods,selected metals,which were Cu11
Zn 11
Mn11,Co11,Fe" and Hg11 were reacted with ligand to &