In this work, the superconducting CuBa2LaCa2Cu4O11+δ compound was prepared by citrate precursor method and the electrical and structural properties were studied. The electrical resistivity has been measured using four probe test to find the critical temperature Tc(offset) and Tc(onset). It was found that Tc (offset) at zero resistivity has 101 K and Tc (onset) has 116 K. The X-ray diffraction (XRD) analysis exhibited that a prepared compound has a tetragonal structure. The crystal size and microscopic strain due to lattice deformation of CuBa2LaCa2Cu4O11+δ were estimated by four methods, namely Scherer(S), Halder-Wagner(H-W), size-strain plot (SSP) and Williamson-Hall, (W-H) methods. Results of crystal sizes obtained by these methods were compared with each other. In all these methods, the values of βhkl (full-width half-maximum (FWHM) for diffraction peaks) and miler indices (hkl) are determined from the results obtained from Fullprof, Mach, Origin and VESTA software. The lattice parameters a, b and c, lattice shape, d and degree of crystallization were calculated. It was found that the crystal size which are calculating by S, W-H, SSP and H-W were (174.8472, 171.1776, 173.1009 and 175.4386) A0 respectively while the lattice strain values were (none, 0.0025, 0.004 and 0.003464), respectively.
Been using a pv system program to determine the solar window for Baghdad city . the solar window for any location can be determine by deviating left and right from the geographical south as well as deviation according to the amount of tilt angle with the horizon for fixed panel so that will not change the average of solar radiation incident over the whole year and this lead to help in the process of installation of fixed solar panel without any effect on annual output .the range of solar window for Baghdad city between two angles ( -8 - +8 ) degrees left to right of the geographical south and tilt angle that allowed for the horizon range between angles (21- 30) degrees so that the amount of solar radiation that falling on the solar pan
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Microwave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreIn this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreThis research aims at calculating the optimum cutting condition for various types of machining methods, assisted by computers, (the computer program in this research is designed to solve linear programs; the program is written in v. basic language). The program obtains the results automatically, this occur through entering the preliminary information about the work piece and the operating condition, the program makes the calculation actually by solving a group of experimental relations, depending on the type of machining method (turning, milling, drilling). The program was transferred to package and group of windows to facilitate the use; it will automatically print the initial input and optimal solution, and thus reduce the effort and t
... Show MoreIn this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreThe electrochemical behavior of carbon steel in water sweetening station in Libya has been studied in the range of ( 293–333 oC) using weight loss technique. Measurements were carried out over a range of Reynolds number (5000 – 25000).An apparatus was designed for studying the corrosion process in the turbulent regime, which is of industrial significance. It was found that The corrosion rate of carbon steel in water sweetening station is under diffusion control and increases with increasing Reynolds number. On the other hand the variation of corrosion rate with temperature in the range of (293–333 oC) was found to follow Arrhenius equation and the activation energy approximately the same except at low Reynolds
... Show More