A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g−1, 0.02 and 0.02 ng mL−1, respectively while the quantification limits were 0.19 ng g−1, 0.06 and 0.08 ng mL−1, respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g−1, grape juice and urine samples at 1, 25 and 50 ng mL−1 ranged from 90.6 to 101.5%. The proposed method was applied to thirty-eight samples of coffee, grape juice and urine and the presence of OTA was found in eighteen samples. The levels found, however, were all below the legal limits.
new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreMetronidazole-MIPs were prepared by using (MDZ) as the template as well as allylchloride (AYC) or allylbromide (AYB) as monomer, used (TMPTA) tri-methylol propane tri-acrylate or ethylene glycol di-methyl acrylate (EGDMA) as cross-linker and initiator used (BP) benzyl peroxide. By using different plasticizers (di butyl Phthalate (DBPH), Nitrobenzene (NB), oleic acid (OA) and paraffin) for MDZ-MIP1 and (Di-butyl sebecate (DBS), Di-methyl acrylate (DMA), Tributylphosphate(TBP) and Tris(ethylhexyl phosphate (TEHP) ) for MDZ-MIP2. Membranes of MIPs were prepared in PVC matrix. The characterizations of each electrode were determined The Slope range from (55.083 - 43.711) mV/decade, Limit of Detection (8 X 10 -4- 2 X 10-6) and Linearity
... Show MoreThe aim of this study was to develop a sensor based on a carbon paste electrodes (CPEs) modified with used MIP for determination of organophosphorus pesticides (OPPs). The modified electrode exhibited a significantly increased sensitivity and selectivity of (OPPs). The MIP was prepared by thermo-polymerization method using N,N-diethylaminoethymethacrylate (NNDAA) as functional monomer, N,N-1,4-phenylenediacrylamide (NNPDA) as cross-linker, the acetonitrile used as solvent and (Opps) as the template molecule. The three OPPs (diazinon, quinalphos and chlorpyrifos) were chosen as the templates, which have been selected as base analytes which used widely in agriculture sector. The extraction efficiency of the imprinted polymers has been evaluat
... Show MoreMolecularly imprinted polymers (MIPs) are an effective method for separating enantiomeric compounds. The main objective of this research is to synthesize D-arabinitol MIPs, which can selectively separate D-arabinitol and its potential application to differentiate it from its enantiomer compound through a non-covalent approach. A macroporous polymer was synthesized using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate (EGDMA) being a cross-linker, dimethylsulfoxide (DMSO) being a porogen, as well as benzoyl peroxide being an initiator. After polymer synthesis, D-arabinitol was removed by a mixture of methanol and acetic acid (4:1, v/v). Fourier-Transform Infrared spectroscopy (FT-IR) and Scan
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show MoreThis study sought to determine malformation caused by Ochratoxin-A (OTA) on mouse embryos. Twenty adult female white Swiss mice (mus msculus) were divided into four groups, with five females per group, and with one male placed with two females in a cage. Avaginal plug was observed in the early morning and the day of mating was considered as day of pregnancy followed by the first day of pregnancy. Three sub lethal concentrations of OTA were applied to the respective groups (other than the control), 1mg/kg, 2mg/kg and 4mg/kg. The animals were given 0.1 ml per 10 gm body weight per concentration of OTA once a day during days 7-14 of pregnancy. The control group animals were given distilled water. The pregnant mice were dissected, and the embry
... Show MoreThe current work is characterized by simplicity, accuracy and high sensitivity Dispersive liquid - Liquid Micro Extraction (DLLME). The method was developed to determine Telmesartan (TEL) and Irbesartan (IRB) in the standard and pharmaceutical composition. Telmesartan and Irbesartan are separated prior to treatment with Eriochrom black T as a reagent and formation ion pair reaction dye. The analytical results of DLLME method for linearity range (0.2- 6.0) mg /L for both drugs, molar absorptivity were (1.67 × 105- 5.6 × 105) L/ mole. cm, limit of detection were (0.0242and0.0238), Limit of quantification were (0.0821and0.0711), the Distribution coefficient were
... Show More