Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You only look once”) neural network algorithm, which is an efficient real-time object identification algorithm, an intelligent system was developed in this thesis to distinguish which faces are wearing a mask and who is not wearing a wrong mask. The proposed system was developed based on data preparation, preprocessing, and adding a multi-layer neural network, followed by extracting the detection algorithm to improve the accuracy of the system. Two global data sets were used to train and test the proposed system and worked on it in three models, where the first contains the AIZOO data set, the second contains the MoLa RGB CovSurv data set, and the third model contains a combined data set for the two in order to provide cases that are difficult to identify and the accuracy results that were obtained. obtained from the merging datasets showed that the face mask (0.953) and the face recognition system were the most accurate in detecting them (0.916).
in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
Most Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin
The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreAerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreThe aim of the current study is to identify the level of goal conflict with twelfth-grade students in South Sharqiah/ Sultanate of Oman according to gender and specialization. The study used the descriptive method. A scale of (28) items was developed and divided into six dimensions: time pressure, goal achievement, limit of power, limit of budget, incompatible strategies, and unclear task. To validate the scale, it was piloted (40) students. The scale was administered to a sample of (402) students (209) males in the Governorate of South Sharqiah. The results showed that the conflict level was high in “unclear task”, and an average conflict level in “limit of power”. Other dimensions (goal achievement, time pressure, limit of powe
... Show MoreSelf-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show More