Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You only look once”) neural network algorithm, which is an efficient real-time object identification algorithm, an intelligent system was developed in this thesis to distinguish which faces are wearing a mask and who is not wearing a wrong mask. The proposed system was developed based on data preparation, preprocessing, and adding a multi-layer neural network, followed by extracting the detection algorithm to improve the accuracy of the system. Two global data sets were used to train and test the proposed system and worked on it in three models, where the first contains the AIZOO data set, the second contains the MoLa RGB CovSurv data set, and the third model contains a combined data set for the two in order to provide cases that are difficult to identify and the accuracy results that were obtained. obtained from the merging datasets showed that the face mask (0.953) and the face recognition system were the most accurate in detecting them (0.916).
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe present study included the microscopic and molecular identification of Entamoeba histolytica by using specific primers to detect four virulence factors possessed by Entamoeba histolytica. Virulence factors included Active Cysteine proteinase, Galactose/N-acetyl-D-galactose-lectin, Amoeba pore C and Phospholipase. Titanium dioxide nanoparticles (TiO2NPs) were synthesized from Pseudomonas aeruginosa which producing Pyocyanin pigment as a reducing agent to form it. After that we studied the ability ofTiO2NPs to inhibit virulence factors production and curing the genes responsible for encoding them by using four different dose 2 ,3, 4, 6 mg/Kg and administered by intraperitoneal injection
... Show MoreAbstract The present study was Conducted to evaluate the effect of amixture of three species of arbuscular mycorrhizal fungi ( Glomus etunicatum , G. leptotichum and Rhizophagus intraradices ) in Influence on the percentage of the components of NPK and protein of tomato leaves and roots infected with Fusarium oxysporum f.sp. Lycopersici wich cause Fusarial wilt disease , planted for 8 weeks in the presence of the organic matter ( peatmose) , using pot cultures in aplastic green house , Results indicated significant increase in the percentage of the elements of NK and protein of tomato leaves and roots In the control treatment (C), While the percentage of the element P was after infection with the pathogen 4 weaks after mycorrhiza
... Show MoreThe present study was Conducted to evaluate the effect of amixture of three species of arbuscular mycorrhizal fungi ( Glomus etunicatum , G. leptotichum and Rhizophagus intraradices ) in Influence on the percentage of the components of NPK and protein of tomato leaves and roots infected with Fusarium oxysporum f.sp. Lycopersici wich cause Fusarial wilt disease , planted for 8 weeks in the presence of the organic matter ( peatmose) , using pot cultures in aplastic green house , Results indicated significant increase in the percentage of the elements of NK and protein of tomato leaves and roots In the control treatment (C), While the percentage of the element P was after infection with the pathogen 4 weaks after mycorrhizal colonization in al
... Show MoreBackground: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show MoreBackground: Early detection of subclinical left ventricular (LV) systolic dysfunction is crucial and could influence patients' prognosis by aiding the clinician to candidate patients for better management.
Objective: To detect early LV systolic dysfunction in asymptomatic patient with chronic aortic regurgitation by two dimensional speckle tracking echocardiography.
Methods: Sixty one asymptomatic patients with chronic aortic regurgitation, with no ischemic heart diseases (by coronary angiography) or conductive heart diseases, no diabetes mellitus, no hypertension, and no other valvular heart diseases (group 1) and fifty age and sex-matched healthy subjects (
... Show MoreIn this search, a new pyrophosphate technique was proved. The technique was employed to single- nucleotide polymorphisms (SNPs), which diagnosis using a one-base extension reaction. Three Mycobacterium tuberculosis genes were chosen (Rpob, InhA, KatG) genes. Fifty-four specimens were used in this study fifty-three proved as drug-resistant specimens by The Iraqi Institute of Chest and Respiratory Diseases in Baghdad.; also one specimen was used as a negative control. The steps of this technique were by used a specific primer within each aliquot that has a short 3-OH end of the base of the target gene that was hybridized to the single-stranded DNA template. Then, the Taq polymerase enzyme and one of either α-thio-dATP, dTTP, dGTP, or dCTP
... Show MoreIn order to investigate the presence of methicillin or multidrug resistant Staphylococcus aureus in food-chain especially Cows raw milk and white raw soft cheese and its whey, a total of 30 samples were collected randomly from different markets in Baghdad Province during December 2012 till February 2013, in which samples were analyzed by a standard isolation protocols of food microbiology with some modification processing by new, modern and rapid technology tools such as chromogenic medium Baird-Parker agar, Electronic RapIDTM Staph Plus Code Compendium Panel System (ERIC®) Dryspot Staphytect Plus and Penicillin Binding Protein (PBP2') Plus assays; as well as, studying the susceptibility of isolates to different selected antibiotics. The r
... Show More