Preferred Language
Articles
/
mRZkzIsBVTCNdQwCmN97
Employ Mathematical Model and Neural Networks for Determining Rate Environmental Contamination
...Show More Authors

Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 28 2024
Journal Name
International Journal Of Sustainable Development And Planning
The Role of Environmental Auditing in Achieving Sustainable Development: Management Systems as a Mediator
...Show More Authors

The present study tackles the complex issue of the urgent need for Environmental Auditing (EA) in Iraq in the absence of laws that support environmental management and in the light of the high rates of cancerous diseases in Iraq, which coincided significantly with the increase in oil production, according to the numbers indicated in the Iraqi Ministry of Health. The study aimed to investigate the mediating role of Management Systems (MS) related to the role of EA supporting sustainability reports concerning the reduction of the negative effects of gas emissions from oil companies. We adopted the descriptive approach which relies on studying relationships through a questionnaire that was distributed to a group of workers at Doura Refinery in

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Plant Archives
Study of the environmental parameters on cephalexin degradation by anodic oxidation with biological indication
...Show More Authors

Scopus
Publication Date
Sun Mar 13 2011
Journal Name
Baghdad Science Journal
Environmental Study of Some Water Characteristics at Um-Al-Naaj Marsh, South of Iraq.
...Show More Authors

Um-Al-Naaj region in Al-Hawiezah Marsh, Southern Iraq was chosen to study the environmental variations of some water characteristics during 2008, seasonally. The results showed clear seasonal changes in values of some environmental variables (temperature, depth, light penetration, turbidity, total suspended solids, pH, dissolved oxygen, reactive phosphate, reactive nitrite, and reactive nitrate), while there were no clear seasonal changes in electrical conductivity and salinity values. In addition, high nutrients concentrations and light penetration were noted. Statistical analysis showed significant positive relationship between air and water temperature; electrical conductivity and salinity. Water turbidity was significantly affecte

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Environmental Technology & Innovation
Environmental remediation of synthetic leachate produced from sanitary landfills using low-cost composite sorbent
...Show More Authors

Scopus (37)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF