Preferred Language
Articles
/
mRYvjIcBVTCNdQwCw1Vt
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (12)
Crossref (7)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Ieee Transactions On Human-machine Systems
Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio–Temporal Interaction
...Show More Authors

View Publication
Scopus (30)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Nano Hybrids And Composites
OLED Hybrid Light Emitting Devices with ZnS QDs, TPBi and Alq3 Electron Transport Layers
...Show More Authors

Semiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Concept And Importance Of Detection Failureś Possibilities Of Corporation Proposed Model For Application In The Iraqi Environment
...Show More Authors

Research aims to shed light on the concept of corporate failures , display and analysis the most distinctive models used to predicting corporate failure; with suggesting  a model to reveal the probabilities of corporate failures which including internal and external financial and non-financial indicators, A tested is made for the research objectivity and its indicators weight and by a  number of academics professionals experts, in addition to  financial analysts  and have concluded a set of conclusions ,  the most distinctive of them that failure is not considered a sudden phenomena for the company and its stakeholders , it is an Event passes through numerous stages; each have their symptoms that lead eve

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
Features of the actor's performance in the ritual theater (Iraqi theater as a model): علي شخير نفل
...Show More Authors

The features of the actor's performance in the ritual theater are of great importance and chief in theatrical work since the first emergence of the theater, as the features of the performance were embodied in all Iraqi theatrical performances, but they took personal privacy in some ritual performances because of their differences and similarities between the ritual theatrical performance and the ritual show Al-Khalis, who wanted the researcher to know the similarities and differences in the features of the ritual performance and in the theatrical performance, despite the many transformations that occurred in the theater and affected the features of the performance, but it remained an important and attractive link between the recipient, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
A VEGETATIONAL STUDY OF THE LOVE CREEK NATURE CENTER BFRR1EN COUNTY, MICHIGAN HISTORICAL, PHYSICAL AND ECOLOGICAL FEATURES
...Show More Authors

    The Love Creek Nature Center, one of the three nature centers located within the boundaries of Berrien County, is owned and operated by the county for public enjoyment and instruction of nature. The 44.5 ha study area, located seven km east of Berrien Springs, and two km southwest of Berrien Center, on Huckleberry Road, in T6S, R17W, sections 16, 17 (Lat. 41° 56' N; Long. 86° 18' W) is made up of deciduous woods and abandoned fields at various stages of succession. It is bounded on the east by the Berrien County Dog Pound and Huckleberry Road, to the north by cultivated Berrien County land and the Berrien General Hospital, to the west by the recently closed Berrien - Oronoko Township Landfill Dump; and to the south b

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 21 2018
Journal Name
Plant Archives
EXTRACTION, ANTIMICROBIALACTIVITYAND PHYTOCHEMICAL OF CLERODENDRUM VISCOSUM
...Show More Authors

Clerodendrum plant is believed to be very useful in many countries for treating various health disorders .“in this study was undertaken to assess antimicrobial activity of ethanol and aqueous extracts of clerodendrum plant”. Display my alcoholic extract higher inhibition of the aqueous extract all of the bacteria (Esherichia Coli , Pseudomonas aeruginosa, Bacillus subtilis). While the inhibition of the aqueous extract bacteria (Streptococcus, Shigelladysenteria) in higher alcoholic extract. However, the bacteria (Klebseillapneumoniae) did not shown any inhibition zone for both aqueous and alcoholic extracts. From the above results,“ it is concluded the antibacterial properties of Clerodendrum against life threatening pathogens”. So,

... Show More
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Extraction of Chlorophyll from Alfalfa Plant
...Show More Authors

The extraction process of chlorophyll from dehydrated and pulverized alfalfa plant were studied by percolation method. Two  solvent systems were used for the extraction namely; Ethanol-water and Hexane-Toluene systems . The effect of circulation rate, solvent concentration, and solvent volume to solid weight ratio were studied. In  both ethanol water, and Hexane-Toluene systems it appears that solvent concentration is the most effective variable.

 

 

View Publication Preview PDF