Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
In latest decades, genetic methods have developed into a potent tool in a number of life-attaching applications. In research looking at demographic genetic diversity, QTL detection, marker-assisted selection, and food traceability, DNA-based technologies like PCR are being employed more and more. These approaches call for extraction procedures that provide efficient nucleic acid extraction and the elimination of PCR inhibitors. The first and most important stage in molecular biology is the extraction of DNA from cells. For a molecular scientist, the high quality and integrity of the isolated DNA as well as the extraction method's ease of use and affordability are crucial factors. The present study was designed to establish a simple, fast
... Show Moreيهدف البحث الحالي إلى الاستفادة من القهوة المستهلكة , كمادة وسيطة حيث تعد القهوة المستهلكة من المخلفات المضرة للبيئة الاستخراج الكافيين الطبيعي والذي يعد مادة ذات نشاط حيوي واهمية, وتحديد العوامل الفعالة في كفاءة عملية الاستخلاص من حيث تركيز الكافيين. تضمنت المتغيرات الرئيسية المدروسة وقت الاستخلاص 0-150 دقيقة ، ودرجة الحرارة 25-55 درجة مئوية ، وسرعة الخلط 180-450 دورة في الدقيقة ، ودرجة الحموضة العالق
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.
This research aims to know the effectiveness of teaching with a proposed strategy according to the common Knowledge construction modelin mathematical proficiency among students of the second middle class. The researchers adopted the method of the experimental approach, as the experimental design was used for two independent and equal groups with a post-test. The experiment was applied to a sample consisting of (83) students divided into two groups: an experimental comprising (42) students and a control group, the second comprising (41) students., from Badr Shaker Al-Sayyab Intermediate School for Boys, for the first semester of the academic year (2021-2022), the two groups were rewarded in four variables: (chronological age calculated in mo
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show More