Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The present work deals with five species of parasitic Hymenoptera belonging to Pteromalidae, Eupelmidae and Eurytornidae which have been reared from brachid beetles. A new species, Eurytoma irakensis is described and the species, Bruchocida orientalis Crawford is recorded for the first time from Iraq.
In this study, we introduce new a nanocomposite of functionalize graphene oxide FGO and functionalize multi wall carbon nanotube (F-MWCNT-FGO).The formation of nanocomposite was confirmed by FT-IR ,XRD and SEM. The magnitude of the dielectric permittivity of the (F-MWCNT-FGO) nanocomposite appears to be very high in the low frequency range and show a unique negative permittivity at frequencies range from 400 Hz to 4000Hz. The ac conductivity of nanocomposite reaches 23.8 S.m-1 at 100Hz.
The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreThis research attempts to shed light on a topic that is considered one of the most important topics of HRMs management, which is the Employee centric approach by examining its philosophy and understanding . To achieve the goal, the research relied on the philosophical analytical method, which is one of the approaches used in theoretical studies. The research reached a set of conclusions, the most important of which are the theoretical studies that addressed this entry in the English language and the lack of it in the Arabic language, according to the researcher's knowledge. The research reached a set of recommendations, the most important of which was that this approach needs more research, analysis and study at the practical and th
... Show MoreMultiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of central nervous system with complex etiopathogenesis that impacts young adults (Lee et al., 2015), and MS impacts younger and middle aged character and leads to a range of disabilities that can alter their daily routines (Yara et al, 2010). Although, the exact cause of MS is still undetermined, the disease is mediated by adaptive immunity through the infiltration of T cells into the central nervous system (Bjelobaba et al, 2017). MS causes the Focal neurological symptomsand biochemical changes in the molecular level and the variation of neural cells such as loss or alteration of sensation, motor function, visible signs such as blurred vision or transient blindness,
... Show More