Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Background: Ostеoporosis is a systеmic disеasе of thе bonе that is charactеrizеd by rеducеd bonе mass, which lеads to incrеasеd bonе fragility and fracturеparticularly in postmеnopausal womеn.Thе aims of study was toеvaluatе thе rеlationship bеtwееn mandibular radiomorphomеtric indicеs obtainеd on digital panoramic radiographswith thе bonе minеral dеnsitiеs of thе lumbar spinееvaluatеd using dual-еnеrgy X-ray absorptiomеtry (DXA) scan, in a population of ostеoporotic and non-ostеoporotic fеmalеs. Matеrials and mеthods: In panoramic imagеs obtainеd from 60 fеmalе individuals dividеd еq
... Show MoreThe biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreAbstract:
Objective: The study’s aim to evaluate the effectiveness of instructional program about healthy lifestyle on patients’ attitudes after undergoing percutaneous coronary intervention.
Methodology: Quasi-experimental design/ has been utilized for the current study starting from December 2018 to March 2020 to achieve the objectives of the study. Non-probability (purposive) sample of 60 patients was divided into intervention and control groups. Data were analyzed by the application of descriptive and inferential statistical methods.
Results: findings reported that before intervention both study and control groups demonstrated low total mean of score relat
... Show MoreThe research aims to study the basic concepts of the underwriting policy with its various indicators. The researcher studies the underwriting policy with its various indicators (sex, health status, age of the insured, insurance amount, The method of acceptance, payment method, and duration of insurance) where each of these indicators constitute an important factor in the productivity of life insurance policies, where the productivity of life insurance policies face many difficulties because insurance is a service and not a tangible material commodity and its benefits and not current. Therefore, the life insurance company needs to use a prudent underwriting policy so as not to endanger its financial position due to the expansion of the un
... Show MoreThe aim of this work is to produce samples from Iraqi raw materials like Husyniat Bauxite (raw and burnt) and to study the effect of some additives like white Doekhla kaolin clays and alumina on that material properties were using sodium silica as a binding material. Five mixtures were prepared from Bauxite (raw and burnt) and kaolin clays, with an additive of (40) ml from sodium silica and alumina of (2.5, 5, 7.5,10 wt %) percentage as a binding material. the size grading was through sieving. The formation of all specimens was conducted by a measured gradually semi-dry pressing method under a compression force of (10) Tons and humidity ratio ranging from (5-10) % from mixture weight. Drying all specimens was done and then they were burn
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem