Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show MoreModern communication and media technology has pioneered new horizons and curried out deep changes in the various fields of social life, It effected enormously human communication as well.
Content one Who late the developments which have effected the social relations ،due to the new media ،especially Face book ,will certainly notice the far cry changes of the social relation net which has been effected ,in a way or another ،the accelerated development ،under the appearance of the so called the virtual society .
Face book has embodied the means – communication ,which has become an important turn point in the social communication .
It is the point the present paper tries to expose an discuss by a field study curried on a sam
This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreThis work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages,(10 rpm) discs speed of stainless steel discs,(pH= 9.5) of feed solution and (pH= 2) of acceptor solution in n-decane. Assuming the existence
... Show MoreIn this work, the extraction of glycyrrhizin from Licorice using bulk liquid membrane technique was developed and optimized. The effect of various parameters such as pH of stripping and donor solutions, temperature, stirring speed and kinetic parameters were investigated. Moreover, to study the impact of the polarity of membrane solvent, two types of extraction solvents were used as a membrane solvent: n-Hexane was used as a non-polar solvent and 1-Hexanol was as a polar solvent. The optimum extraction condition was found (95.53%) using 1-Hexanol, rotating speed was 400 rpm, and pH of the acceptor and donor solutions were 8 and 5.5, respectively. The reaction kinetics constants ( and ) for the transport of glycyrrhizin from the donor pha
... Show MoreThis work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages, (10 rpm) discs speed of stainless steel discs, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Assuming the existen
... Show MoreThe main objectives of this research is to extract essential oil from: orange ( citrus sinensis), lemon( citrus limon) and mandarin( citrus reticulata) peels by two methods: steam distillation (SD) and microwave assisted steam distillation (MASD), study the effect of extraction conditions (weight of the sample, extraction time, and microwave power, citrus peel type) on oil yield and compare the results of the two methods, the resulting essential oil was analyzed by Gas Chromatography (GC).
Essential oils are highly concentrated substances used for their flavor and therapeutic or odoriferous properties, in a wide selection of products such as foods, medicines and cosmetics. Extracti
... Show MoreThe use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on th
... Show MoreThe process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show More