Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreThe general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthe
... Show MoreModerately, advanced national election technologies have improved political systems. As electronic voting (e-voting) systems advance, security threats like impersonation, ballot tampering, and result manipulation increase. These challenges are addressed through a review covering biometric authentication, watermarking, and blockchain technologies, each of which plays a crucial role in improving the security of e-voting systems. More precisely, the biometric authentication is being examined due to its ability in identify the voters and reducing the risks of impersonation. The study also explores the blockchain technology to decentralize the elections, enhance the transparency and ensure the prevention of any unauthorized alteration or
... Show MoreAn investigation was conducted for the study of extraction of metal ions using aqueous biphasic systems. The extraction of iron, zinc and copper from aqueous sulphate media at different kinds of extractants SCN− , Cl- and I- , different values of pH of the feed solution, phase ratio, concentration of metals, concentration of extractant, concentration of polymer, and concentration of salt was investigated. Atomic absorption spectrophotometer was used to measure the concentration of iron, zinc and copper in the aqueous phase throughout the experiments. The results of the extraction experiments showed the use of SCN− as extractant, pH=2.5, phase ratio=1.5, concentration of metals 1g/l, concentration of extractant 0.06 %, concentration o
... Show MoreThis study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.
Siderophores are low molecular weight organic compounds produced by microorganisms growing under low iron concentration.In this study we describe the detection, production and extraction of siderophores secreted by Acinetobacter baumannii (Multiple-drug resistant ) pathogens. One hundered twenty Gram –negative non lactose fermenter bacilli isolates have been collected from three hospitals at Baghdad city over three months. Primary identification of these isolates is performed by standard diagnostic methods (biochemical tests and API 20 NE); 19 clinical isolates of A. baumannii are cultured on CHROMagar (highly selective medium for detection of MDR Acinetobacter) as well as diagnoses is documented by using Vitek 2 system. Isolates are exa
... Show More