Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreAutoimmune hepatitis is an inflammatory disease and its incidence has been increasing. The features of hepatitis are the release of inflammatory cytokines, the elevation of AST and ALT, and hepatocyte apoptosis and necrosis. Concanavalin A considered as essential model represents the acute immune-mediated liver damage in rodents. Thymoquinone is well known herbal compound that exert hepatoprotective, anti-inflammatory, and antioxidant activity. In this study, we focus on the immunoregulatory and liver protective effect of thymoquinone in a mouse model of concanavalin A-induced liver injury.
Twenty-four male mice were randomly divided into four groups each containing six animals: Negative control group, concanavalin A model group,
... Show MoreObesity is an escalating health problem in developing countries. One to ten children worldwide are overweight in a report showed by the International Obesity Task Force. Ghrelin, orexigenic peptide, has 28 amino acids, it is considered the greatest remarkable promotion in the last two decades for understanding the physiological changes of action regulating food intake and hunger. Obestatin is a 23-amino acid peptide nearly connected to ghrelin that secures from substitutio
... Show MoreThe present work aims to study the efficiency of using aluminum refuse, which is available locally (after dissolving it in sodium hydroxide), with different coagulants like alum [Al2 (SO4)3.18H2O], Ferric chloride FeCl3 and polyaluminum chloride (PACl) to improve the quality of water. The results showed that using this coagulant in the flocculation process gave high results in the removal of turbidity as well as improving the quality of water by precipitating a great deal of ions causing hardness. From the experimental results of the Jar test, the optimum alum dosages are (25, 50 and 70 ppm), ferric chloride dosages are (15, 40 and 60 ppm) and polyaluminum chloride dosages were (10, 35 and 55 ppm) for initial water turbidity (100, 500 an
... Show MoreA Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an
... Show MoreAverage interstellar extinction curves for Galaxy and Large Magellanic Cloud (LMC) over the range of wavelengths (1100 A0 – 3200 A0) were obtained from observations via IUE satellite. The two extinctions of our galaxy and LMC are normalized to Av=0 and E (B-V)=1, to meat standard criteria. It is found that the differences between the two extinction curves appeared obviously at the middle and far ultraviolet regions due to the presence of different populations of small grains, which have very little contribution at longer wavelengths. Using new IUE-Reduction techniques lead to more accurate result.
The aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive convers
... Show MoreThe study aimed to build a suggested conception for employing gamification in teaching the general education curricula. Using the analytical method of the previous analytical studies in Teaching, which agreed with the determinants of the analysis of 20 studies from 2014 to 2019, they come on order: points, badges, leaderboards, and then levels. The four most commonly used theories are the theory of self-determination, flow theory, the theory of planned behavior and social theory. In addition, the researcher identified the most commonly used models in gamification, respectively: the ARCS model and the user-based design model. Based on the results of the analysis and using the descriptive approach, the researcher presented a practical perc
... Show More