Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Research covers the uses the method of Quality Rating Evaluation to evaluate the
quality of production through which a determination of product quality of its production in
order to determine the amount of sales hence the profits for the company. The most important
function is to satisfy consumer at reasonable prices. Methods were applied to the product
(toothpaste) in the General Company for Vegetable Oil – Almaamoon Factory .
The company's has obtained ISO-certified (ISO 9001-2008). Random samples of
final product intended for sale were collected from the store during months (February, April ,
June , October and December) for the year 2011 to determine the "quality rating " through
the applicat
This paper presents the Taguchi approach for optimization of hardness for shape memory alloy (Cu-Al-Ni) . The influence of powder metallurgy parameters on hardness has been investigated. Taguchi technique and ANOVA were used for analysis. Nine experimental runs based on Taguchi’s L9 orthogonal array were performed (OA),for two parameters was study (Pressure and sintering temperature) for three different levels (300 ,500 and 700) MPa ,(700 ,800 and 900)oC respectively . Main effect, signal-to-noise (S/N) ratio was study, and analysis of variance (ANOVA) using to investigate the micro-hardness characteristics of the shape memory alloy .after application the result of study shown the hei
... Show MoreIn recent years, the Global Navigation Satellite Services (GNSS) technology has been frequently employed for monitoring the Earth crust deformation and movement. Such applications necessitate high positional accuracy that can be achieved through processing GPS/GNSS data with scientific software such as BERENSE, GAMIT, and GIPSY-OSIS. Nevertheless, these scientific softwares are sophisticated and have not been published as free open source software. Therefore, this study has been conducted to evaluate an alternative solution, GNSS online processing services, which may obtain this privilege freely. In this study, eight years of GNSS raw data for TEHN station, which located in Iran, have been downloaded from UNAVCO website
... Show MoreAbstract
The study aimed: To assess the level of trainers' knowledge about the application of strategies and to find out the relationship between Trainer's knowledge and their socio-demographic characteristics.
Methodology: Using the pre-experimental design of the current study, for one group of 47 trainers working at the private Autism Centers in Baghdad, data was collected from 8/January / 2022 to 13 /February /2022. Using non-probability samples (convenient samples), self-management technology in which trainers fill out the questionnaire form themselves was used in the data collection process; it was analyzed through descriptive and inference statistics.
The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show More