Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
In this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreThe radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.
Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreMarshlands environment in southern Iraq is unique and is considered a habitat of thousands of migratory birds as shelter and a source of livelihood for thousands of people living there. Its environment is characterized by a fragile ecosystem that requires great care and effort to achieve the greatest possible balance and parallelism of development, which necessarily require careful environmental planning that accurately regulates the resources of the environment and therefore, planned the best way to use them. The idea of research for creating the spatial organization of the development of the human settlements and taking into account the environmental aspect by thinking for the plann
3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show MoreAirlift reactors are widely used in the chemical and biochemical applications as effective contactors for mass and heat transfer. The main advantages of airlift contactor compared with simple bubble column are ease of construction, low shear rate, high capacity, good mixing and liquid circulation without mechanical agitators and circulating pumps.
In this work, growth characteristics of Chlorella vulgaris microalgae were studied in an internal loop airlift photobioreactor for biomass production. The bioreactor operated under batch and semi-continuous culture mode using commercially available 20:20:20+TE NPK fertilizer as nutrients. The experiments were conducted to evaluate the growth rate and biomass productivity of
... Show MoreIn this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.