Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreA batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
Cement-based adhesive (CBA) is used as a bonding agent in Carbon Fibre Reinforced Polymer (CFRP) applications as an alternative to epoxy-based adhesive due to the drawbacks of the epoxy system under severe service conditions which negatively affect the bond between the CFRP and strengthened elements. This paper reports the results of, an investigation carried out to develop two types of CBA using magnetized water (MW) for mixing and curing. Two magnetic devices (MD-I and MD-II), with different magnetic field strengths (9000 and 6000 Gauss) respectively, were employed for water magnetization. Different water flows with different water circulation times in the magnetizer were used for each device. Compressive and splitting tensile strength te
... Show MoreThe compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture, University of Baghdad " Abu Ghraib" during the growing seasons 2013-2014 to Evaluate the Vegetative growth , yield traits and genetic parameter of some tomato mutants. Results showed significantly increased of plant height in M6-2 mutant 245cm in Comparison with M6- 3 130 cm . M6-4 mutant significantly increasing of floral clusters 13 . Mutant M6-3 showed significantly increasing the average of, fruit weight 125.9g and plant yield 7.17 kg.plant-1 as comparison with M6-2 which showed decreasing of average of fruit weight and plant yield 79.40g and 4.38 kg.plant-1 respectively. Also results showed the highest Genetic variat
... Show MoreThe objective of this research was to estimate the dose distribution delivered by radioactive gold nanoparticles (198 AuNPs or 199 AuNPs) to the tumor inside the human prostate as well as to normal tissues surrounding the tumor using the Monte-Carlo N-Particle code (MCNP-6.1. 1 code). Background Radioactive gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated to treat prostate cancer in animals. In order to use them as a new therapeutic modality to treat human prostate cancer, accurate radiation dosimetry simulations are required to estimate the energy deposition in the tumor and surrounding tissue and to establish the course of therapy for the patient. Materials and methods A simple geometrical
... Show MoreThe research, whose goal was to study students' failure in secondary school in Iraq, found that 50% of the Iraqi governorates achieved the lowest student failure rates, and Baghdad governorate had the highest percentage of repeaters. And that half of the provinces in Iraq have males constitute 70% of the repeaters, and failure in the exam represented 79.7% of the reasons for failure, and that half of the students who failed are confined to the first and third intermediate grades at a rate of 51.9% , and the research revealed that the security instability was the most influential factor in Students fai
Background: The repair of bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. This study aimed to study the efficacy of Panax ginseng as a osteoinducer in tibia of rat and as a stimulator for bone healing and to study the immunohistochemical expression of osteonectin as bone formation markers in experimental and control groups during bone healing. Material and method: : In this study thirty albino male rats , weighting (200-300) gram ,aged (2-3) months ,will be used under control conditions of temperature ,drinking and food consumption. The animals will subject for an
... Show More