Preferred Language
Articles
/
mRYk6YsBVTCNdQwCLuQi
Contribution Ratio of Cognitive Learning Outcome in the Performance of the Two Skills of Mastering by Parallel Spherical Standing and Equilibrium on the Balance Beam
...Show More Authors

The purpose of this paper is to identify the statistical indicators of the searched variables and identify the relationship between the cognitive learning outcome and the performance of the two mastering skills by parallel spherical standing and equilibrium on the balance beam. And the identification of the percentage of the cognitive learning outcome contribution to the performance of the two mastering skills by parallel spherical standing and the equilibrium on the balance beam. The two researchers used the descriptive approach in the survey method and the correlational relations, being the most appropriate to the nature of the research problem. The research community for the second stage students in the College of Physical Education and Sports Sciences for Woman for the academic year (2020-2021) was determined, and their number was (104) students. The exploratory and main research sample was chosen randomly, as the exploratory sample reached (10) students and the main sample reached (40) students with a rate of (38,461%). The conclusions came that the cognitive learning outcome has a positive role in the performance of the two mastery skills by parallel spherical standing and the equilibrium on the balance beam, as well as the cognitive learning outcome contributed well in managing the two mastery skills by parallel spherical standing and the equilibrium on the balance beam. The two researchers recommend it is necessary for female teachers to pay attention to the subject of artistic gymnastics with the outcome of cognitive learning during the educational units because it has an effective and influential role in mastering the performance of the two mastery skills by parallel spherical standing and the equilibrium on the balance beam, and the cognitive learning outcome must be evaluated continuously after completion of Educational units, and testing of motor learning strategies and their methods by the teachers that enable the learner through the acquisition of the intended learning outcomes.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Annals Of The Romanian Society For Cell Biology
Rehabilitation exercises accompanying ultrasound in the rehabilitation of the elbow joint for patients with tendinitis, aged (30-40) men
...Show More Authors

The elbow joint is one of the important and mobile joints in a way that allows it to perform its functions. The injury occurs when the joint tendon and arm muscles are subjected to repeated partial ruptures as a result of excessive and repetitive work, as well as the patient not being subjected to correct rehabilitation programs, and only rest. From here, the researchers decided to study this problem by preparing rehabilitation exercises accompanying ultrasound and assessing their impact on the rehabilitation of the elbow joint. The sample included male patients aged 30-40 years, and the tests were determined, which included testing the range of motion of the elbow joint from the flexion position and the rotation outward position, the mu

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 29 2021
Journal Name
Frontiers In Immunology
The Ability of AhR Ligands to Attenuate Delayed Type Hypersensitivity Reaction Is Associated With Alterations in the Gut Microbiota
...Show More Authors

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates T cell function. The aim of this study was to investigate the effects of AhR ligands, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), and 6-Formylindolo[3,2-b]carbazole (FICZ), on gut-associated microbiota and T cell responses during delayed-type hypersensitivity (DTH) reaction induced by methylated bovine serum albumin (mBSA) in a mouse model. Mice with DTH showed significant changes in gut microbiota including an increased abundance of Bacteroidetes and decreased Firmicutes at the phylum level. Also, there was a decrease in Clostridium cluster XIV and IV, which promo

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Nov 05 2025
Journal Name
Irrigation And Drainage
Predicting Potential Salinity in River Water for Irrigation Water Purposes Using Integrative Machine Learning Models
...Show More Authors
ABSTRACT<p>Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct</p> ... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Inventory control by using Fuzzy set theory An Applied Research at the Baghdad Soft Drinks Company
...Show More Authors

The production companies in the Iraqi industry environment facing many of the problems related to the management of inventory and control In particular in determining the quantities inventory that should be hold it. Because these companies  adoption on personal experience and some simple mathematical methods which lead to the identification of inappropriate quantities of inventory.

       This research aims to identify the economic quantity of production and purchase for the Pepsi can 330ml and essential components in Baghdad soft drinks Company in an environment dominated by cases of non ensure and High fluctuating as a result of fluctuating demand volumes and costs ass

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Modern Sport
The Instantaneous Push Force Indicator and Its Relationship to Lower Limb Explosive Power and Selected Biomechanical Variables of the Salto forward tucked
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
The relationship of Nuclear Decay Methods (alpha and beta) Particles with the Nuclear Deformation for Nuclei inUranium-238 and Thorium -232 Series
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref