Preferred Language
Articles
/
mIYLVIYBIXToZYALioLg
Estimate Gas Initially in Place of Tight Gas Reservoirs Based on Developed Methodology of Dynamic Material Balance Technique
...Show More Authors

With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to estimate gas. Usually during production three variables are readily accessible: production rate, production time, and pressure-volume-temperature properties. This paper develops an analytical approach derived from the dynamic material balance proposing a new methodology to calculate pseudo time, with an interactive technique. This model encompasses pseudo functions accounting for pressure dependent fluid and rock variables. With the dynamic material balance yielding weak results in the linear flow regimes, an additional methodology derived from the volumetric tank model has been taken into consideration whereby equivalent drainage area is linked to total reservoir area. It has been shown even with short production data this volumetric approach yields accurate results. This proposed methodology has been validated against previous literature and additional cases considered to determine the sensitivity of each of it to reservoir parameters. Finally, it is shown that this method works for both fractured and unfractured wells in tight gas reservoirs, however, it is sensitive to the quantity of data based within the pseudo steady state flow period.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 03 2021
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Correlation of Minimum Miscibility Pressure for Hydrocarbon Gas Injection In Southern Iraqi Oil Fields
...Show More Authors

One of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir.  MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta

... Show More
View Publication
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Future Prospects for the Natural Gas Industry in Iraq and Investment Opportunities
...Show More Authors

 

Abstract

  Natural gas is characterized by features that made from it a fuel and a raw material for many industries. Deepening its position as a favorite fossil supplier between other types of fossil fuel is the efficiency, diversity of its uses, low costs and compatibility with the environment which leads to increasing of its uses then increased global demand. So, the natural gas must take its place as an important resource in Iraq and participate the oil in the economic development process of building and financing of the general budget.

  Iraq is planning to continue of increasing the export capacity of raw oil to meet ambitious production targets emanating from the mai

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
Gas Sensing of (SnO2)1-x(ZnO)x Composite Associating with Electrical Properties
...Show More Authors

Abstract

Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and  tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Physical Mesomechanics Of Condensed Matter: Physical Principles Of Multiscale Structure Formation And The Mechanisms Of Nonlinear Behavior: Meso2022
Calculation of radon gas concentrations in administration rooms for a number of schools in Diyala governorate
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication and Characterization of Silver-Doped Nickel Oxide Thin Films for Gas Sensors
...Show More Authors

The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Spectroscopic study of dielectric barrier discharge argon plasma at different gas flow rates
...Show More Authors

Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Studying of Plasma- Polymerized Pyrrole at Variable Gas Flow Rates Via Plasma Jet
...Show More Authors

     In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the  oxidization  state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3  nm at the three flow rate of argon gas. The chemical composition and structural properties of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Study the effect of ozone gas and ultraviolet radiation and microwave in the degredation of aflatoxin B1 produce by Aspergillus flavus on stored Maize grains.: Study the effect of ozone gas and ultraviolet radiation and microwave in the degredation of aflatoxin B1 produce by Aspergillus flavus on stored Maize grains.
...Show More Authors

This study was conducted in the plant protection department/ College of Agriculture/ University of Baghdad to evaluate the efficiency of physical agents ozone, ultraviolet radiation, microwave for destroying afla produced in corn seeds. An isolate af A.flavus producing Aflatoxin B1 was obtained from plant protection dept. college of Agric. University of Baghdad. Results showed destroy toxin AFLA B1 the effect of radiation microwave in the media of Japex degree 80 and 100 co 57.14% and 85.71%, respectively, and for 20 sec, compared to the treatment comparison 0.00% as found significant differences were apparent between transactions and the treatment of comparison, as and notes the existence of a significant dif

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 05 2019
Journal Name
Digest Journal Of Nanomaterials And Biostructures
Improving sensitivity of In2O3 against NO2 toxic gas by loading tin oxide(Article)
...Show More Authors

The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo

... Show More
Publication Date
Fri Mar 01 2019
Journal Name
Iraqi Journal Of Physics
Enhancement of NO2 gas sensing behavior for ZnS/PPy nanostructure by loading graphene
...Show More Authors

The pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,

... Show More
View Publication Preview PDF
Crossref