Sub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MorePolyacetal was synthesized from the reaction of Polyethylene glycol with4- dimethylaminobenzaldehyde.Polymer metal complex was synthesized by the reaction with Ag+; polymer blend with polyvinyl alcohol was synthesized solution casting technique. All synthesized compounds were characterized by FT-IR in addition to the antimicrobial activity. The FT-IR spectra indicate the formation of the polyacetal. The DSC resultsindicatethe thermal stability regarding the synthesized polymer blends. The synthesized polyacetal, its metal complex and PA blend against four types of bacteria (gram+ve) Staphylococcus aureas, Bacillus subtilis and (gram –ve)Klebsiella pneumoniae, Escherichia Coli w
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreA new Species of the Cerambycinae belonging to the genus Hesperophanes was found new to the fauna of Iraq and Science. H. testaceus was studied in details and the male genitalia were illustrated. Type's paratypes and the locality of this newly described Species were mentioned.
The use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.
Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.
Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).
In
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.