The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show MoreThe polymeric hydrogels composed of poly vinyl alcohol (m.wt 72000) and glutaraldehyde(5%,8% and 10%) , have been thermally prepared for the purpose of studying their swelling and drug release behavior . The swelling ratio was measured for all the hydrogel samples at 37°C, in three different media pH (1.2, 4.7 and 6.8) as a function of time. The results show that the maximum swelling ratios were arranged as follows :pH =6.8 > pH =4.7 > pH =1.2 hydrogels cross linked PVA showed a typical pH responsive behavior such as high pH has maximum swelling while low pH shows minimum swelling.
Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
Silver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreEffect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MoreIn this study, high quality ZnO/Ag-NPs thin transparent and conductive film coatings were fabricated
Polycrystalline ingots of cadmium telluride have been synthesized using the direct
reaction technique, by fusing initial component consisting from pure elements in
stoichiometric ratio inside quartz ampoule is evacuated 10-6 torr cadmium telluride has
been grown under temperature at (1070) oC for (16) hr. was used in this study, the phases
observed in growing CdTe compound depend on the temperature used during the growth
process. Crystallography studies to CdTe compound was determined by X-ray diffraction
technique, which it has zinc blend structure and cubic unit cell, which lattice constants is
a=6.478
oA