This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics in the power supply line. The smoothness of the heating process’s output response, which is a result of both empirical experiments and simulation results, demonstrates the efficacy of the suggested control mechanism, where the output response had a small ripple margin. The system performed according to design expectations and had unimpaired unity power factor throughout its operating range and no ripple was detected during its functioning.
This paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow rat
... Show MoreThe main aim of this research to study and recognize the specifications and main concepts of (Fuzzy Logic) and its components and studying the practical experiments of the (Fuzzy Logic) techniques in the electrical engineering field through by using the (Fuzzy Logic) for controlling the three-phase AC induction motor by using (Matlab_ simulation_7) for modeling the system by using the computer
Environmental Control Systems form one of the integral tasks of the designer, resulting from his/her acquaintance with the nature of sites and the way they are deployed to achieve modern space entity which is witnessing significant development in the field of interior design.Good deployment of these systems offer us, as designers, high potential and several varied solutions to configure internal spaces characterised as a fertile field of study and knowledge.The research problem was identified in the marginalisation of the importance of Environmental Control Systems as an important designing factor to achieve integrated design. The research problem was demonstrated in Chapter One, along with defining the objectives and formulating
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.
Water supply and distribution networks play an important role in our daily activities. They make a substantial contribution to public health by providing potable water for public consumption and non-potable applications such as firefighters and other purposes such as irrigation. This study used ArcMap 10.8 and WaterGEMS CONNECT Edition update 1 version to create a hydraulic network model to simulate the pipes’ network. Detailed network information, including pipe lengths, layouts, and diameters, was given by the Baghdad Water Department. The TUF-2000H Handheld digital ultrasonic flow meter has been used to measure the water flows in the network’s source nodes. In eight junctions,
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreAcceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.
An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo
... Show MoreWe explore the transform coefficients of fractal and exploit new method to improve the compression capabilities of these schemes. In most of the standard encoder/ decoder systems the quantization/ de-quantization managed as a separate step, here we introduce new way (method) to work (managed) simultaneously. Additional compression is achieved by this method with high image quality as you will see later.