Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co
This work was conducted to study the treatment of industrial waste water, and more particularly those in the General Company of Electrical Industries.This waste water, has zinc ion with maximum concentration in solution of 90 ppm.
The reuse of such effluent can be made possible via appropriate treatments, such as chemical coagulation, Na2S is used as coagulant.
The parameters that influenced the waste water treatment are: temperature, pH, dose of coagulant and settling time.
It was found that the best condition for zinc removal, within the range of operation used ,were a temperature of 20C a pH value of 13 , a coagulant dose of 15 g Na2S /400ml solution and a settling time of 7 days. Under these conditions the zinc concentrat
Electro coagulation treatment was used for zinc removal from electroplating wastewater of the State Company for Electrical Industries . This wastewater, here consists zinc ions with maximum concentration in solution of 90 ppm .
The parameters that influenced the wastewater treatment are: current density in the range 1-1.4 mA/cm2, pH in the range 5-10, temperature in the range 25-45°C and time in the range 10-180 minute.
The research is a laboratory experimental type using batch system for electrical process with direct current. The cell comprised of aluminum electrode as anode and stainless steel electrode as cathode. Thirty experiments and one hundred fifty sample lab tests were carried out in this research
... Show MoreThe presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreThis study was carried out in Baghdad (Al-Jadiriya) in 2006 by detecting ability of aquatic reed plant to remove heavy metals (Chromium) from waste water by batch process of adsorption with considering that acidic solution is best selection for such process with constant initial chromium concentration(60 mg/l),speed of shaking(300 rpm), temperature (30 Co) and constant contact time (4 h) but with different weights of adsorbent (reed) (0.5 ,1 ,2 ,3 and 4 )gm for each 100 ml volume of sample . The results showed that the percentage of the removed chromium were ( 8% ,17.5% ,31% ,40% and 50%) respectively for each sample according to the mass of adsorb
... Show MoreThe presence of residual antibiotics in water results in the development of antibiotics resistant genes. The available wastewater treatment systems are not capable of removing such antibiotics from sewage. Thus, antibiotics need to be removed before the discharge of wastewater. Adsorption is among the promising techniques for the wastewater treatment to aid the removal of a wide range of organic and inorganic pollutants. The present work is a contribution to the search for an economical method for the removal of low concentrations of amoxicillin (AMX) from water by adsorption on water treatment residue, WTR, taken from a local drinking water facility. The chemical composition and the adsorptive characteristics of the material were first
... Show More