To determine the relationship between Helicobacter pylori infection and Multiple Sclerosis (MS) disorder, 20 patients with MS aged (25-60) years have been investigated from the period of 2016/12/1 to 2017/3/1 and compared to 15 apparently healthy individuals. All study groups were carried out to measure anti H.pylori IgA and H.pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA) technique. There was a significant elevation (p<0.05) in the concentration of anti H.pylori IgG and IgA antibodies (Abs) compared to control group, and there was no significant difference (p>0.05) in the concentration of IgA and IgG (Abs) of H.pylori according to gender, and there was no significant difference (p>0.05) in the concentration of IgA and I
... Show MoreAn experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation
In this work, plasma parameters such as electron density (ne), electron temperature (Te), Debye length (λD), plasma frequency (fPlasma), and Debye number (ND) for Cu plasma produced by Pin-Plate DC discharge were studied. Spectroscopic technique was used to analyze and determine spectral emission lines. The value of the electron density for Cu was in the range (1.5–3.5)×1018cm-3 and for the electron temperature was in the range ( 1.31 – 1.61)eV. Finally, plasma parameters of Cu were caculated through plasma produced by Pin-Plate DC discharge using different voltages (600-900) V.
To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
An experimental and numerical study has been carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition; The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra* =500 for numerical study, annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to write the governing equation under an assumptions used Darcy law and Boussinesq’s approximation and then solved numerically using finite difference approximation. It was found that the averag
... Show MoreThe heat transfer and flow resistance characteristics for air flow cross over circular finned tube heat exchanger has been studied numerically and experimentally. The purpose of the study was to improve the heat transfer characteristics of an annular finned-tube heat exchanger for better performance. The study has concentrated on the effect of the number of perforations and perforations shapes on the heat transfer and pressure drop across a staggered finned tube heat exchanger. The Numerical part of present study has been performed using ANSYS Fluent 14.5 using SST Turbulent model, while the experimental study consist from a test rig with different models of heat exchangers and all required measurement devices were build
... Show MoreIn this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur