Vitamin D3 deficiency is regarded as a public health issue in Iraq, particularly during the winter. Sun exposure is the main source of vitamin D3, where the surface ultraviolet (UV) radiation plays an important role in human health. The amount of time that must be spent in the sun each day was determined for the amount of exposed skin, for all skin types, with and without sunscreen under clear sky conditions in the city of Baghdad (Long 44.375, Lat 33.375). UV index data was obtained by TEMIS satellite during the year 2021. From data analysis, we found that most days during the year were within the high level of ultraviolet radiation values in the city of Baghdad, and most of them were during the summer, where the person n
... Show MoreAbstract
This research aims to reform the Iraqi public budget through going into the challenges the budget faces in applying item-line budget in its preparation, implementation and control; which encourage extravagance and waste instead of rationalizing expenditures. This is shown in the data analysis of Federal public budget laws in Iraq for the years from 2005 till 2013; there was a continuous increase in the aggregate public expenditures in the public budget for the years previously mentioned, as the public expenditures growth has reached into the percent 284.71% in 2013. In addition the public budget for these years (2005-2013) is being prepared with planned deficit without confirming that
... Show MoreAbstract A descriptive study was carried out on nurses who were working at burn. Units in Baghdad city hospitals, Al-Kindy , Al-Yarmook, Al-Qadisiya, Al-karkh, and Al-Karama hospital, in the period from 20th july 2003 to 20th November 2003. The study aimed to identify the nurses performance about pain management for burned patients at burn units and find out the relationship between the demographic characteristics and performance . A purposive (non-probability) sample of (40) nurses, (24) male nurses and (16) female. The data were collected through the use of observational checklist, which comprised (
In this study, an approach inspired by a standardized calibration method was used to test a laser distance meter (LDM). A laser distance sensor (LDS) was tested with respect to an LDM and then a statistical indicator explained that the former functions in a similar manner as the latter. Also, regression terms were used to estimate the additive error and scale the correction of the sensors. The specified distance was divided into several parts with percent of longest one and observed using two sensors, left and right. These sensors were evaluated by using the regression between the measured and the reference values. The results were computed using MINITAB 17 package software and excel office package. The accuracy of the results in this wo
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreMagnetic Resonance Imaging (MRI) is one of the most important diagnostic tool. There are many methods to segment the
tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment the brain with high precision. In this project, the unsupervised classification methods have been used in order to detect the tumor disease from MRI images. These metho
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.