Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
This study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.
CNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
The current study introduces a novel method for calculating the stability time by a new approach based on the conversion of degradation from the conductivity curve results obtained by the conventional method. The stability time calculated by the novel method is shorter than the time measured by the conventional method. The stability time in the novel method can be calculated by the endpoint of the tangency of the conversion curve with the tangent line. This point of tangency represents the stability time, as will be explained in detail. Still, it gives a clear and accurate envisage of the dehydrochlorination behavior and can be generalized to all types of polyvinyl chloride compared to the stability time measured by conventional ones based
... Show MoreThe research seeks to find the relationship between psychological flow and futuristic thinking among postgraduate students. To this end, the researchers have made up two scales: one scale to measure the psychological flow which consisted of (32) items and the other to measure the futuristic thinking included (39) items which were distributed into three domains. As to collect the required data, the two scales had applied on a sample comprised (200) postgraduate students. The findings revealed that there is a correlation between psychological flow and futuristic thinking. The researcher recommended the coming studies take the relationship between psychological flow and psychological happiness.
Liquisolid compact is the most promising technique for increasing dissolution rate and bioavailability of poorly soluble drugs.Clopidogrel bisulfate is an oral antiplatelets used for treatment and prophylaxis of cardiovacular and peripheral vascular diseases related to platelets aggreagation.Clopidogrel has low solubility at high pH media of intestine and low bioavailability of a bout 50% after oral doses.The purpose of this work was to enhance dissolution pattern of clopidogrel through its formulation into liquisolid tablets.A mathematical model was used to calculate the optimum quantities of tween 80 , carrier (Avicel PH 102) and coating material (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures.The liq
... Show MoreNumerical simulations are carried out to evaluate the coherence concept’s effect on the performance regarding the optical system, when observing and imaging the planet’s surface. In numerous optical approaches, the coherence qualities of light sources play an important role. This paper provides an overview about the mathematical formulation of temporal and spatial coherence and incoherence properties of light sources. The circular aperture was used to describe the optical system like a telescope. The simulation results show that diffraction-limited for incoherent imaging system certainly improves the image. Yet, the quality of the image is degraded by the light source's highly spatial and temporal coherence properties, resulting in a
... Show MoreIn terms of the core nucleus plus valence nucleon, shell-model calculations using two model spaces and interactions, the relationship between a nucleus' proton skin, and the difference in proton radii of mirror pairs of nuclei with the same mass number are investigated. In this work, two pairs of mirror nuclei will be studied: 17Ne-17N and 23Al-23Ne. For 17Ne-17N nuclei, p-shell and mixing of psd orbits are adopted with Cohen-Kurath (ckii) and psdsu3 interactions. While for 23Al-23Ne, the sd-shell and sdpf shell are adopted with the universal shell model (USD) and sdpfwa interactions. Also, the ground state density distributions, elastic form factors, and root mean square radii of these pairs' nuclei are studied and com
... Show MoreThis study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a pot
... Show More